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ABSTRACT 
 
The high price, long design and development cycles, 
programming difficulty and high maintenance cost of 
supercomputers limit their range of potential applications. 
Recent advances in Field-Programmable Gate Arrays 
(FPGAs) have made feasible the development of high-
performance and programmable parallel systems on a 
programmable chip (PSOPC). PSOPC’s yield high-
performance at low cost for many parallel applications. 
We present in this paper the design and implementation of 
our HERA (HEterogeneous Reconfigurable Architecture) 
machine that employs FPGAs to allow the simultaneous 
execution of a variety of parallel processing modes,  
including SIMD (Single-Instruction, Multiple-Data), 
MIMD (Multiple-Instruction, Multiple-Data) and M-
SIMD (Multiple-SIMD). The processing element is 
centered on a single-precision IEEE 754 floating-point 
unit (FPU) and employs a 7-stage pipeline. To 
demonstrate the robustness and viability of our approach, 
we propose a data partitioning scheme and employ mixed-
mode scheduling for Cannon’s matrix-matrix 
multiplication algorithm with matrices of arbitrary size 
and shape. Performance results on our 64-PE machine 
that employs a dual-FPGA system are better than the 
optimized performance on a dual-Xeon PC.  
 
Key Words: Parallel processing, Reconfigurable 
architecture, SIMD/MIMD mixed-mode computing, 
Floating-point arithmetic, Matrix multiplication, 
Cannon’s algorithm 
 
1.  Introduction 
 

Proprietary supercomputer development has suffered 
in recent years after more than 20 years of tremendous 
investments [1-2]. Many concepts of parallelism are 
commonly present in modern microprocessors, such as 
memory hierarchy, superpipelining, multiple functional 
units, superscaling, out-of-order execution, branch 
prediction, SIMD processing, and speculative and 
predicated execution. One of the reasons for the decline of 
supercomputer development is the partial or complete 

dependence on custom chips, often making systems suffer 
from high prices, long turn-around times, prohibitively 
high upgrade costs and little flexibility.  Many research 
efforts have shifted to COTS (commercial-off-the-shelf)-
based platforms in recent years, such as symmetric 
multiprocessors (SMP) or clusters of PCs. However, these 
approaches do not often deliver the highest level of 
performance due to many inherent disadvantages of the 
underlying sequential platforms and “the divergence 
problem” [2].  In order to satisfy the greedy need of many 
scientific and engineering applications, whose time 
complexities increase at a faster rate than Moore's Law 
[3], for higher computation power, we need to explore 
new, sustainable, cost-effective, flexible and energy-
efficient strategies. 

With steady advances in silicon technologies and the 
promise of billion-transistor chips in just a few years time, 
single-chip parallel architectures seem to be gaining 
popularity. Recent research efforts in this direction 
include Hydra [4], SCMP [5], RAW [6], etc. The main 
driving force is the diminishing gain in performance by 
further exploring ILP (Instruction Level Parallelism) 
techniques in superscalar microprocessors and the 
frequently limited amount of ILP in programs [7].  
Another important reason is the reverse scaling of wires 
compared to transistors in deep-micron processes. As a 
result, a major shift from ILP to TLP (Thread Level 
Parallelism) is undergoing in both the industry and 
research communities. However, these approaches also 
suffer from the same problem as supercomputers: a high 
volume is required to amortize the high development and 
NRE costs.  The ever-shortening product cycles, and the 
high design complexity of these solutions also limit their 
applicability.   

The recent advent of multi-million gate FPGAs having 
richer embedded feature sets, such as plenty of on-chip 
memory, DSP blocks and embedded hardware 
microprocessor IP cores, facilitates high performance, low 
power consumption and high density. These traits make 
feasible the implementation of Parallel Systems on a 
Programmable Chip (PSOPCs) at affordable costs. 
FPGAs provide a great opportunity to system designers to 
combine the high-performance of ASIC devices with the 
programming flexibility of microprocessors. More 
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importantly, by using FPGAs we can customize the 
computing hardware appropriately at runtime to match the 
characteristics of the parallel algorithms. Although 
previous FPGA-based custom computing machines had 
demonstrated considerable performance gains at reduced 
costs over general-purpose microprocessors for many 
computation-intensive applications [8-10], the processing 
capability of such systems is often limited. For example, 
in most scientific and engineering applications, floating-
point representation is frequently required in order to deal 
with large dynamic data ranges. Because floating-point 
units consumed a large proportion of resources in earlier 
FPGAs, very few reconfigurable machines supported 
floating-point arithmetic [8-10]. Although it has been 
shown recently that the peak floating-point performance 
of FPGAs has outnumbered in the last 1-2 years that of 
modern microprocessors and is growing much faster than 
the latter [11], we have not seen yet any programmable 
parallel system based on FPGAs that supports floating-
point operations; the only exception is our previous 
research efforts on parallel LU factorization on a 
configurable multiprocessor [12].   

In this paper, we present the design and 
implementation of our HERA machine which is based on 
Xilinx platform FPGAs. HERA is a new, mixed-mode 
heterogeneous parallel computing system supporting 
floating-point arithmetic. Every PE in our machine can be 
reconfigured dynamically at the instruction level to 
operate in SIMD or MIMD. Thus, the whole system can 
support a variety of independent or cooperating 
computation modes, such as SIMD, MIMD and M-SIMD, 
to better match subtask characteristics in a single 
application. An important motivation for mixed-mode 
computing [13] is that a typical application may have 
several subtasks that require different computation modes. 
For a fixed machine configuration, the performance on 
most subtasks is not normally optimal because of the 
architecture's expected unsuitability. The low 
communication overhead and low cost of our approach 
add much needed promise to the high-performance 
computing field. Our machine has a standard RISC 
instruction set that can be applied to many problems.  

Matrix-matrix multiplication (MMM) is a key 
operation in many fundamental algorithms. Its high 
computation complexity, O(N3), where N x N is the matrix 
size, has attracted many research efforts. The reduction of 
this complexity can also benefit many applications 
involving the solution of systems of linear equations, the 
triangular decomposition of matrices, matrix inversion, 
the computation of determinants and watermarking in 
image processing.  Cannon’s MMM algorithm [14] is a 
memory efficient parallel implementation for torus-
connected processor arrays, where each processor 
communicates directly with its four neighbors 
immediately to the north, east, west and south (NEWS 
connections). The memory efficiency of Cannon’s 
algorithm is advantageous to FPGA-based designs 
because of their limited on-chip memory resources. The 
original algorithm by Cannon assumes that the input 

matrices and the partitioned matrix blocks are all square. 
In this paper, we show that by employing an innovative 
data partitioning scheme and also mixed-mode scheduling 
for our HERA machine, Cannon’s algorithm can be 
efficiently applied to matrices of arbitrary shape and size.  
 
2. HERA: A Reconfigurable Mixed-Mode 
Parallel Computer 
 

SIMD and MIMD are distinct computation modes in 
parallel processing. SIMD machines consist of an array of 
identical PEs which are capable of performing 
simultaneously the same operation on different sets of 
data, under the control and coordination of a global 
control unit. Low inter-processor communication and 
synchronization overheads make it superior to MIMD in 
performing data-parallel algorithms. On the other hand, 
MIMD is preferable for medium- to large-grain 
parallelism, where multiple processes or routines are 
implemented in parallel.  

 
2.1 System Organization 

 
Fig. 1 shows the general diagram of our HERA 

machine with m x n PEs interconnected via a 2-D mesh 
network. The 2-D mesh topology is ideal for our target 
matrix-based applications and is also scalable. The 
computing fabric is controlled by the system Sequencer 
that communicates with the host processor via the PCI 
bus. Interrupt logic between the Sequencer and the host 
processor is implemented. The Global Control Unit 
(GCU), included in the system Sequencer, fetches 
instructions from the global program memory (GPM) for 
PEs operating in SIMD.  

The total number of PEs is determined by the available 
resources in target FPGA devices and the resource 
requirements of the application. Due to the presence of 
FPGAs, besides that the system operating mode is 
reconfigurable at runtime, the capabilities of each PE and 
the number of PEs can be easily reconfigured based on 
the application requirements. The host can load different 
FPGA images in the same C code to finish different 
subtasks at runtime. Thus, FPGAs provide another 
dimension of flexibility toward optimizing the hardware 
to match the specific characteristics of the applications. 

We employed fast, direct NEWS (North, East, West 
and South) connections for communications between 
nearest neighbors. Nearest PE pairs on the same row or 
column can also communicate through one port of the 
data memory of the PEs to the west and north. Since 
every PE also has a Local Control Unit (LCU), the 
decoding of instructions is carried out by the LCU. By 
giving the decoding work to the LCUs, we avoid 
broadcasting a large number of control signals to all the 
PEs. We still need global communication. Every column 
has a Cbus and all the Cbuses are connected to the 
Column Bus. 
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Fig. 1.  HERA system architecture 

 
2.2 PE Architecture 

 
We followed a RISC load-store architecture for our PE 

to save hardware resources. Fig. 2 shows the block 
diagram of the PE. All data paths are 32 bits. The PE 
contains several major components: a 7-stage, pipelined, 
32-bit floating-point function unit (FFU), an LCU, 32-bit 
dual-ported local program memory (LPM), 32-bit dual-
ported local data memory (LDM) and eight NEWS 
communication ports. The sizes of LPM and LDM were 
determined by the number of memory blocks in the FPGA 
device. They are configured as dual-ported 32-bit 
memories.  The A port of LDM is accessed by the local 
PE, and the B port is shared with the neighbors to the 
south and east. A PE can directly write to or read from the 
LDMs of its west and north neighbors via their B ports. 
This feature facilitates large block data transfer and data 
I/O. Data in one of the NEW_IN registers can be sent to 
any of the four neighboring NEWS_OUT registers by 
using one instruction.  

Our HERA design implements IEEE 754 single-
precision pipelined floating-point operations in each PE. 
We employed a 3-stage pipeline in the floating-point 
adder, subtractor and multiplier and a 28-stage pipeline in 
the floating-point divider. The frequencies after place-
and-route for a Xilinx VirtexII FPGA XC2V6000 are 
128.3MHz (add/sub), 150.8MHz (mul) and 165.4MHz 
(div). Since we focused on prototyping the concept to 
prove the viability of our mixed-mode design approach, 
we did not spend much time in this first phase to improve 
the performance of our FPU. 

Every PE in the processor array has an ID number. The 
last 7 bits in all instructions select a particular PE or a 
group of PEs. Every PE holds a mask bit and computes 

the masking value with every instruction. The destination 
register of Get_N/E/W/S instructions or the source register 
of Send_N/E/W/S instructions can also be one of the four 
NEWS_OUT registers. This way, data can bypass a PE to 
reach the next PE because we can use shared NEWS 
registers between PE pairs. Each PE comprises 32 32-bit 
general-purpose registers (GPRs) and several system 
registers: local instruction register (LIR), local program 
counter (LPC), data memory address register (DMAR), 
program memory address register (PMAR), local status 
register (LSR), local masking register (LMR) and 1-bit 
operating mode register (OMR).  Similar to some other 
RISC processors, the R0 GPR is fixed at zero. 
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Our design philosophy for instructions is to have a 
small and highly optimized instruction set for our target 
applications, while not losing generality for the sake of 
programming efficiency. The instructions can be 
classified into five major groups: floating-point arithmetic 
(add/sub/mul/div), memory access, jump and branch, PE 
NEWS communication, and system control.  All the 
instructions follow a three-field general format and are 32 
bits wide. The instructions support immediate, register 
and base addressing. 

The operating mode of each PE is configured 
dynamically by the host processor through its OMR by 
using the Configure instruction:  “0” indicates SIMD and 
“1” sets the PE into MIMD. All PEs operate in SIMD 
when powered up. To switch a PE to MIMD from SIMD, 
the sequencer first distributes the instructions to the LPM 
of the PE through the Column Bus and Cbus, and then 
sends a JumpI instruction to the PE with the starting 
address in the MIMD code. OMR is set to 1. To switch 
back to SIMD, OMR is reset to “0” and the PE then 
listens for the broadcasting of a global instruction. The 
data in the registers and memories remain intact during 
switching. The instructions come from GPM in SIMD and 
from LPM in MIMD. The masking in the SIMD mode 
can use the PE’s ID number and/or LMR. 

 
2.3 Implementation Results 



Our first implementation was carried out on the high-
performance WILDSTARII-PCI [15] FPGA board from 
Annapolis Microsystems. The board is populated with 
two Xilinx XC2V6000 Virtex II FPGA devices and 
24MB of DDRII SRAM memory. The board 
communicates with the host computer via the PCI bus 
interface. Every PE was assigned 4KB for LPM and 8KB 
for LDM. The interface to the PCI bus operates at 
133MHz and the datapath is 64 bits. The computing fabric 
is clocked at 80MHz. The system frequency could be 
higher if we only use one FPGA for the whole system. 
We also could employ a commercial IP package to further 
improve the system performance. We removed the 
subtractor and divider from the PE in the case of MMM, 
and 64 PEs were implemented in the two FPGAs. Our 
hardware design was implemented in VHDL and can 
easily retarget other FPGA boards.  

 
3. Generalized Cannon’s Algorithm on HERA 
 
3.1 Data Partitioning and Mapping 
 

Due to limited space in this paper, please refer to 
textbooks about parallel MMM or [14] for the details of 
Cannon’s MMM algorithm. In our implementation, 
matrices A and B can be of any shape and size (still, the 
row numbers of A and the column numbers of B should 
be the same). Let A and B be matrices of size 1 2N x N  
and 2 3N x N , respectively. We assume that the on-chip 
memory can store 3m2 floating-point elements. To be able 
to store complete blocks from the input and output 
matrices, the maximum size of a matrix block should be 
m x m. Let 1 1 ( * )p N q m=    , 2 2 ( * )p N q m=     
and 3 3 ( * )p N q m=    . In general, we first partition A and 
B into 2 x 2 block-based matrices as shown in the 
example of Fig. 3, in such a way that the sizes of A(1,1) 
and B(1,1) are { 1*( * )}x{ 2*( * )}p q m p q m  and 
{ 2*( * )}x{ 3*( * )}p q m p q m , respectively. The remaining 
blocks A(2,1), A(1,2) and A(2,2) of A are decomposed 
into blocks with maximum dimension m. B is partitioned 
similarly. Blocks A(1,1) and B(1,1) are then partitioned 
into 1 x 2p p  and 2 x 3p p  blocks of size ( * ) x ( * )q m q m  
again and are distributed into the processors in a cyclic 
checkerboard-like fashion. Nevertheless, there are some 
special cases we need to mention. If 1 mod ( * ) 0N m q = , 

2 mod ( * ) 0N m q =  and 3 mod ( * ) 0N m q = , then there are 
no A(1,2)/B(1,2), A(2,1)/B(2,1) and A(2,2)/B(2,2) pairs. 
If 1 0p = , then there are no A(1,1) and A(1,2). Similarly, if 

2 0p = , then there are no A(1,1)/B(1,1) and A(2,1)/B(1,2) 
pairs. If 3 0p = , then there are no B(1,1) and B(2,1). 
These special cases still can be solved by the presented 
algorithm. 

Cannon’s algorithm asks for row and column 
wraparound connections while our machine has only 
column wraparounds. In order to solve this problem, the 

Sequencer pipes the needed blocks through the Data Bus 
into PE (i, 8) (see Fig. 1), instead of PE (i, 1). 
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Fig. 3. A partitioning example for matrices A and B 
( 3, 1 2, 2 3, 3 3)q p p p= = = =  
 
3.2 Dynamic Task Scheduling on HERA 
 

If the matrices A and B are square, and can be 
partitioned into an integer multiple of q, then Cannon’s 
algorithm works best in the SIMD mode; all the PEs are 
then busy all the time except during the initial alignment. 
If the A and B matrices are not square or cannot be 
partitioned in such a way that N (the matrix dimension) is 
a multiple integer of *q m , then the multiplication of the 
border blocks is not efficient in the SIMD mode because 
the sizes and numbers of blocks are irregular. Some PEs 
are idle while other PEs are busy at some point because 
SIMD is a implicitly synchronous mode. We solved this 
problem by changing the computation mode of the PEs. 
Also, we skip the initial alignment by assigning data 
blocks in a pre-skewed way. Because our PE is pipelined, 
we assume that multiplication, addition and shift 
operations all take one clock cycle, clkT . The total 
execution time for Cannon’s procedure on one partition is 
approximately 3 2

2( ) *(2 ) 2( )*c shift mul add clk
n nT n q T T T T
q q

= + + = + , 

assuming that the size of the submatrix is n x n . 
The dynamic mixed-mode scheduling procedure for 

our modified Cannon’s algorithm on HERA is as follows. 
 

Step 1. Carry out block multiplications involving 
(1,1)* (1,1)A B  by using Cannon’s algorithm; our 

divide-and-conquer technique carries out a total of 
1* 2* 3p p p  block multiplications. So, the total 

time is about 1* 2* 3* (200)cp p p T . All the PEs take 
part in this step and are configured into the SIMD 
mode. 

Step 2. Carry out the summation of intermediate results 
for (1,1)* (1,1)A B ; we have a total of 1* 3*( 2 1)p p p −  
additions of matrix blocks of size 200 x 200. 
Again, all the PEs take part in this step and 
operate in the SIMD mode. 

Step 3. If the size of A(1,2) and/or B(2,1) is larger than 
½( *q m ), then carry out (1,1)* (1,2)A B  and/or 



(2,1)* (1,1)A B  in SIMD using Cannon’s procedure. 
Otherwise, go to Step 4.  

Step 4. From now on, a job is a multiplication of two 
blocks. Jobs are divided into two groups: SIMD 
and MIMD jobs. SIMD jobs are those 
corresponding to similar number of operations on 
the PEs. The remaining jobs go to an MIMD 
queue. Count the number of jobs and their 
associated number of operations in the remaining 
work. Determine the IDs of PEs that will work in 
the SIMD and MIMD mode based on the job 
information.  

Step 5. Configure individual PEs in the system into either 
the SIMD or the MIMD mode based on the 
decision in the previous step. The system now 
works in the mixed mode. Assign the SIMD jobs 
to the PEs running in the SIMD mode and 
distribute the MIMD jobs to the PEs running in 
the MIMD mode. The host dispatches jobs to the 
PEs whenever they are ready for the next job.  

Step 6. Let the host assign the addition jobs (i.e., the 
addition of blocks belonging to the same block in 
the result matrix) to PEs after all the 
multiplication jobs are finished.  

For the computation of the quadrants in the result 
matrix, (1,1)* (1,1),A B (1,1)* (1, 2)A B and (2,1)* (1,1)A B  consume 
most of the execution time. In all the steps, except Step1, 
data locality is a priority factor in job assignment.  

 
4.  Performance Results and Analysis 
 

We first implemented our mixed-mode MMM 
technique on regular square matrices of size up to 1000 x 
1000 by using HERA’s instruction set. The execution 
times on HERA are presented in Fig. 4. In order to 
compare the performance of modern FPGA-based 
machines with that of microprocessors, we also 
implemented block-based MMM with C code on two 
commercial PCs and comparative results are shown in 
Fig. 4. The time for data I/O for all machines is not 
included in Fig. 4. The block-based MMM code for the 
DELL PCs was optimized by several techniques, 
including using the L1 and L2 cache sizes to determine 
the best block size, compiler flags and copy optimization 
[16]. We can see that our results on HERA are better than 
both the dual-Xeon 2.66GHz and the uni-Pentium IV 
2GHz systems despite HERA’s much lower clock (i.e. 
80MHz).  There are several key contributing factors: (1) 
HERA, or FPGA-based machines in general, usually have 
a much more efficient, application-optimized instruction 
set. So they have many fewer instructions than general-
purpose microprocessors for the same application. (2) The 
performance gap between microprocessors and memory 
chips is growing, while HERA is equipped with tightly 
coupled memory;  (3) With FPGAs, we can build highly 
parallel machines based on the available resources and 
take advantage of many optimized parallel algorithms. 
Microprocessors are inherently sequential and many 

techniques exploring instruction level parallelism (ILP) 
suffer from rather small extracted ILP in algorithms and 
applications.  

The speedups of the parallel implementation on the 64-
PE HERA over the sequential one on an 1-PE HERA are 
shown in Fig. 5.  The speedup for the 100 x 100 case is 
low because the ratio of computation to communication 
times is much lower than for the other cases. We could 
improve the ratios and speedups in all cases by using a 
bigger local memory because the complexity of 
multiplication with a single PE for a pair of blocks is 
O(n3) and that of communication (i.e. shifting) is O(n2), 
where n x n is the block size. With increases in the 
problem size, the speedup and, of course, the efficiency 
stabilize in a very narrow range.  We also evaluated the 
performance of mixed-mode scheduling on a variety of 
matrices having irregular sizes and shapes. An SIMD 
mapping, where the PEs work in the SIMD mode all the 
time, was implemented for these matrices and the results 
are shown in Table 1. From this table we can see that our 
dynamic mixed-mode scheduling can greatly boost 
performance when the multiplication of irregular matrices 
is needed. This need arises in applications such as the 
parallel LU factorization of sparse Block-Diagonal-
Bordered matrices [12]. 

 
5.  Conclusions 

 
This paper focused on the design of our HERA 

machine, a reconfigurable, pipelined computing engine 
implemented on platform FPGAs. It is flexible enough to 
allow mixed-mode execution of various parallel 
processing modes including SIMD, MIMD and M-SIMD. 
The system efficiency is improved significantly by 
employing several techniques, such as PE pipelining, 
pipelined data I/O, a small and optimized set of 
instructions, novel memory interface, etc. Taking 
advantage of the robustness in our mixed-mode hardware 
design, we extended Cannon’s MMM algorithm for 
matrices of arbitrary sizes and shapes. The results show 
that the system efficiency stabilizes with increases in the 
problem size, which shows the good scalability of our 
architecture and algorithm. Also, HERA has shown better 
peak floating-point performance for a real application (i.e. 
MMM) than modern PCs in spite of its much lower 
system frequency.  Many applications can benefit from 
the high-performance and flexibility resulting from 
dynamic mixed-mode scheduling; this is especially true 
for programs rich in conditional and non-deterministic 
operations. Our work shows that new-generation FPGAs 
have made feasible the building of highly parallel 
complex systems supporting floating-point arithmetic. Of 
course, another major advantage is that these systems are 
easily accessible and portable. With the anticipated speed 
and density improvements for FPGAs, reconfigurable 
computers can enter mainstream parallel computing 
because they have the potential to narrow the growing 
performance gap between algorithms and chips. 
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Fig. 4.  Performance comparison of MMM on HERA 
and two DELL PCs (optimized code was run on all the 
machines) 
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Fig. 5. Speedup of parallel execution over uni-PE 
execution 

 
Table 1. HERA execution times for irregular matrices 

(Clock frequency: 80MHz) 
 

Matrix Dimensions 

N1 N2 N3 

HERA in 
SIMD mode 

(sec) 

HERA in 
mixed-

mode 
(sec) 

 
Improvement 

(%) 

105 101 113 0.0179 0.0161 10.1 
201 215 323 0.135 0.113 16.3 
324 599 315 0.578 0.526 9.8 
05 611 613 1.446 1.227 15.1 
509 301 201 0.338 0.296 12.4 
677 202 677 0.787 0.742 5.7 
711 713 403 2.085 1.810 13.2 
955 957 976 8.762 8.105 7.5 

 


