
HERA: A RECONFIGURABLE AND MIXED-MODE PARALLEL COMPUTING
ENGINE ON PLATFORM FPGAS*

Xiaofang Wang and Sotirios G. Ziavras

Department of Electrical and Computer Engineering

New Jersey Institute of Technology
Newark, NJ 07102, USA

 {xw23, ziavras}@njit.edu

ABSTRACT

The high price, long design and development cycles,
programming difficulty and high maintenance cost of
supercomputers limit their range of potential applications.
Recent advances in Field-Programmable Gate Arrays
(FPGAs) have made feasible the development of high-
performance and programmable parallel systems on a
programmable chip (PSOPC). PSOPC’s yield high-
performance at low cost for many parallel applications.
We present in this paper the design and implementation of
our HERA (HEterogeneous Reconfigurable Architecture)
machine that employs FPGAs to allow the simultaneous
execution of a variety of parallel processing modes,
including SIMD (Single-Instruction, Multiple-Data),
MIMD (Multiple-Instruction, Multiple-Data) and M-
SIMD (Multiple-SIMD). The processing element is
centered on a single-precision IEEE 754 floating-point
unit (FPU) and employs a 7-stage pipeline. To
demonstrate the robustness and viability of our approach,
we propose a data partitioning scheme and employ mixed-
mode scheduling for Cannon’s matrix-matrix
multiplication algorithm with matrices of arbitrary size
and shape. Performance results on our 64-PE machine
that employs a dual-FPGA system are better than the
optimized performance on a dual-Xeon PC.

Key Words: Parallel processing, Reconfigurable
architecture, SIMD/MIMD mixed-mode computing,
Floating-point arithmetic, Matrix multiplication,
Cannon’s algorithm

1. Introduction

Proprietary supercomputer development has suffered
in recent years after more than 20 years of tremendous
investments [1-2]. Many concepts of parallelism are
commonly present in modern microprocessors, such as
memory hierarchy, superpipelining, multiple functional
units, superscaling, out-of-order execution, branch
prediction, SIMD processing, and speculative and
predicated execution. One of the reasons for the decline of
supercomputer development is the partial or complete

dependence on custom chips, often making systems suffer
from high prices, long turn-around times, prohibitively
high upgrade costs and little flexibility. Many research
efforts have shifted to COTS (commercial-off-the-shelf)-
based platforms in recent years, such as symmetric
multiprocessors (SMP) or clusters of PCs. However, these
approaches do not often deliver the highest level of
performance due to many inherent disadvantages of the
underlying sequential platforms and “the divergence
problem” [2]. In order to satisfy the greedy need of many
scientific and engineering applications, whose time
complexities increase at a faster rate than Moore's Law
[3], for higher computation power, we need to explore
new, sustainable, cost-effective, flexible and energy-
efficient strategies.

With steady advances in silicon technologies and the
promise of billion-transistor chips in just a few years time,
single-chip parallel architectures seem to be gaining
popularity. Recent research efforts in this direction
include Hydra [4], SCMP [5], RAW [6], etc. The main
driving force is the diminishing gain in performance by
further exploring ILP (Instruction Level Parallelism)
techniques in superscalar microprocessors and the
frequently limited amount of ILP in programs [7].
Another important reason is the reverse scaling of wires
compared to transistors in deep-micron processes. As a
result, a major shift from ILP to TLP (Thread Level
Parallelism) is undergoing in both the industry and
research communities. However, these approaches also
suffer from the same problem as supercomputers: a high
volume is required to amortize the high development and
NRE costs. The ever-shortening product cycles, and the
high design complexity of these solutions also limit their
applicability.

The recent advent of multi-million gate FPGAs having
richer embedded feature sets, such as plenty of on-chip
memory, DSP blocks and embedded hardware
microprocessor IP cores, facilitates high performance, low
power consumption and high density. These traits make
feasible the implementation of Parallel Systems on a
Programmable Chip (PSOPCs) at affordable costs.
FPGAs provide a great opportunity to system designers to
combine the high-performance of ASIC devices with the
programming flexibility of microprocessors. More

*This work was supported in part by the U.S. Department of Energy
under grant DE-FG02-03CH11171.

importantly, by using FPGAs we can customize the
computing hardware appropriately at runtime to match the
characteristics of the parallel algorithms. Although
previous FPGA-based custom computing machines had
demonstrated considerable performance gains at reduced
costs over general-purpose microprocessors for many
computation-intensive applications [8-10], the processing
capability of such systems is often limited. For example,
in most scientific and engineering applications, floating-
point representation is frequently required in order to deal
with large dynamic data ranges. Because floating-point
units consumed a large proportion of resources in earlier
FPGAs, very few reconfigurable machines supported
floating-point arithmetic [8-10]. Although it has been
shown recently that the peak floating-point performance
of FPGAs has outnumbered in the last 1-2 years that of
modern microprocessors and is growing much faster than
the latter [11], we have not seen yet any programmable
parallel system based on FPGAs that supports floating-
point operations; the only exception is our previous
research efforts on parallel LU factorization on a
configurable multiprocessor [12].

In this paper, we present the design and
implementation of our HERA machine which is based on
Xilinx platform FPGAs. HERA is a new, mixed-mode
heterogeneous parallel computing system supporting
floating-point arithmetic. Every PE in our machine can be
reconfigured dynamically at the instruction level to
operate in SIMD or MIMD. Thus, the whole system can
support a variety of independent or cooperating
computation modes, such as SIMD, MIMD and M-SIMD,
to better match subtask characteristics in a single
application. An important motivation for mixed-mode
computing [13] is that a typical application may have
several subtasks that require different computation modes.
For a fixed machine configuration, the performance on
most subtasks is not normally optimal because of the
architecture's expected unsuitability. The low
communication overhead and low cost of our approach
add much needed promise to the high-performance
computing field. Our machine has a standard RISC
instruction set that can be applied to many problems.

Matrix-matrix multiplication (MMM) is a key
operation in many fundamental algorithms. Its high
computation complexity, O(N3), where N x N is the matrix
size, has attracted many research efforts. The reduction of
this complexity can also benefit many applications
involving the solution of systems of linear equations, the
triangular decomposition of matrices, matrix inversion,
the computation of determinants and watermarking in
image processing. Cannon’s MMM algorithm [14] is a
memory efficient parallel implementation for torus-
connected processor arrays, where each processor
communicates directly with its four neighbors
immediately to the north, east, west and south (NEWS
connections). The memory efficiency of Cannon’s
algorithm is advantageous to FPGA-based designs
because of their limited on-chip memory resources. The
original algorithm by Cannon assumes that the input

matrices and the partitioned matrix blocks are all square.
In this paper, we show that by employing an innovative
data partitioning scheme and also mixed-mode scheduling
for our HERA machine, Cannon’s algorithm can be
efficiently applied to matrices of arbitrary shape and size.

2. HERA: A Reconfigurable Mixed-Mode
Parallel Computer

SIMD and MIMD are distinct computation modes in
parallel processing. SIMD machines consist of an array of
identical PEs which are capable of performing
simultaneously the same operation on different sets of
data, under the control and coordination of a global
control unit. Low inter-processor communication and
synchronization overheads make it superior to MIMD in
performing data-parallel algorithms. On the other hand,
MIMD is preferable for medium- to large-grain
parallelism, where multiple processes or routines are
implemented in parallel.

2.1 System Organization

Fig. 1 shows the general diagram of our HERA

machine with m x n PEs interconnected via a 2-D mesh
network. The 2-D mesh topology is ideal for our target
matrix-based applications and is also scalable. The
computing fabric is controlled by the system Sequencer
that communicates with the host processor via the PCI
bus. Interrupt logic between the Sequencer and the host
processor is implemented. The Global Control Unit
(GCU), included in the system Sequencer, fetches
instructions from the global program memory (GPM) for
PEs operating in SIMD.

The total number of PEs is determined by the available
resources in target FPGA devices and the resource
requirements of the application. Due to the presence of
FPGAs, besides that the system operating mode is
reconfigurable at runtime, the capabilities of each PE and
the number of PEs can be easily reconfigured based on
the application requirements. The host can load different
FPGA images in the same C code to finish different
subtasks at runtime. Thus, FPGAs provide another
dimension of flexibility toward optimizing the hardware
to match the specific characteristics of the applications.

We employed fast, direct NEWS (North, East, West
and South) connections for communications between
nearest neighbors. Nearest PE pairs on the same row or
column can also communicate through one port of the
data memory of the PEs to the west and north. Since
every PE also has a Local Control Unit (LCU), the
decoding of instructions is carried out by the LCU. By
giving the decoding work to the LCUs, we avoid
broadcasting a large number of control signals to all the
PEs. We still need global communication. Every column
has a Cbus and all the Cbuses are connected to the
Column Bus.

Column Bus

Host
Processor

Main
Memory

PE(1,1)

PCI Bus

D
at

a
B

us

Dbus1

PE(2,1)Dbus2

PE(m,1)Dbusm

PE(1,2)

PE(2,2)

PE(m,2)

PE(1,n)

PE(2,n)

PE(m,n)

Cbus_1 Cbus_2 Cbus_3 Cbus_n

Sequencer GPM

D
at

a
B

us

GDM

Dbus1

Dbus2

Dbusm

Fig. 1. HERA system architecture

2.2 PE Architecture

We followed a RISC load-store architecture for our PE

to save hardware resources. Fig. 2 shows the block
diagram of the PE. All data paths are 32 bits. The PE
contains several major components: a 7-stage, pipelined,
32-bit floating-point function unit (FFU), an LCU, 32-bit
dual-ported local program memory (LPM), 32-bit dual-
ported local data memory (LDM) and eight NEWS
communication ports. The sizes of LPM and LDM were
determined by the number of memory blocks in the FPGA
device. They are configured as dual-ported 32-bit
memories. The A port of LDM is accessed by the local
PE, and the B port is shared with the neighbors to the
south and east. A PE can directly write to or read from the
LDMs of its west and north neighbors via their B ports.
This feature facilitates large block data transfer and data
I/O. Data in one of the NEW_IN registers can be sent to
any of the four neighboring NEWS_OUT registers by
using one instruction.

Our HERA design implements IEEE 754 single-
precision pipelined floating-point operations in each PE.
We employed a 3-stage pipeline in the floating-point
adder, subtractor and multiplier and a 28-stage pipeline in
the floating-point divider. The frequencies after place-
and-route for a Xilinx VirtexII FPGA XC2V6000 are
128.3MHz (add/sub), 150.8MHz (mul) and 165.4MHz
(div). Since we focused on prototyping the concept to
prove the viability of our mixed-mode design approach,
we did not spend much time in this first phase to improve
the performance of our FPU.

Every PE in the processor array has an ID number. The
last 7 bits in all instructions select a particular PE or a
group of PEs. Every PE holds a mask bit and computes

the masking value with every instruction. The destination
register of Get_N/E/W/S instructions or the source register
of Send_N/E/W/S instructions can also be one of the four
NEWS_OUT registers. This way, data can bypass a PE to
reach the next PE because we can use shared NEWS
registers between PE pairs. Each PE comprises 32 32-bit
general-purpose registers (GPRs) and several system
registers: local instruction register (LIR), local program
counter (LPC), data memory address register (DMAR),
program memory address register (PMAR), local status
register (LSR), local masking register (LMR) and 1-bit
operating mode register (OMR). Similar to some other
RISC processors, the R0 GPR is fixed at zero.

IF ID

1 2 3

fpmul

1 2 ...

fpdiv

28

1 2 3

fpsub

1 2 3

fpadd

M
E
M

WB

LPM

LDM

LCU

Control
Signals

Local
Instructions

Global Instructions

N_IN

S_OUT

N_OUT

S_IN

W_IN

W_OUT

E_IN

E_OUT

PE(i,j)

West PE East PE

North PE

Cbus_j

South PE

LDM: Local Data Memory
LPM: Local Program MemoryTo Cbus_j

Fig. 2. HERA processing element

Our design philosophy for instructions is to have a
small and highly optimized instruction set for our target
applications, while not losing generality for the sake of
programming efficiency. The instructions can be
classified into five major groups: floating-point arithmetic
(add/sub/mul/div), memory access, jump and branch, PE
NEWS communication, and system control. All the
instructions follow a three-field general format and are 32
bits wide. The instructions support immediate, register
and base addressing.

The operating mode of each PE is configured
dynamically by the host processor through its OMR by
using the Configure instruction: “0” indicates SIMD and
“1” sets the PE into MIMD. All PEs operate in SIMD
when powered up. To switch a PE to MIMD from SIMD,
the sequencer first distributes the instructions to the LPM
of the PE through the Column Bus and Cbus, and then
sends a JumpI instruction to the PE with the starting
address in the MIMD code. OMR is set to 1. To switch
back to SIMD, OMR is reset to “0” and the PE then
listens for the broadcasting of a global instruction. The
data in the registers and memories remain intact during
switching. The instructions come from GPM in SIMD and
from LPM in MIMD. The masking in the SIMD mode
can use the PE’s ID number and/or LMR.

2.3 Implementation Results

Our first implementation was carried out on the high-
performance WILDSTARII-PCI [15] FPGA board from
Annapolis Microsystems. The board is populated with
two Xilinx XC2V6000 Virtex II FPGA devices and
24MB of DDRII SRAM memory. The board
communicates with the host computer via the PCI bus
interface. Every PE was assigned 4KB for LPM and 8KB
for LDM. The interface to the PCI bus operates at
133MHz and the datapath is 64 bits. The computing fabric
is clocked at 80MHz. The system frequency could be
higher if we only use one FPGA for the whole system.
We also could employ a commercial IP package to further
improve the system performance. We removed the
subtractor and divider from the PE in the case of MMM,
and 64 PEs were implemented in the two FPGAs. Our
hardware design was implemented in VHDL and can
easily retarget other FPGA boards.

3. Generalized Cannon’s Algorithm on HERA

3.1 Data Partitioning and Mapping

Due to limited space in this paper, please refer to
textbooks about parallel MMM or [14] for the details of
Cannon’s MMM algorithm. In our implementation,
matrices A and B can be of any shape and size (still, the
row numbers of A and the column numbers of B should
be the same). Let A and B be matrices of size 1 2N x N
and 2 3N x N , respectively. We assume that the on-chip
memory can store 3m2 floating-point elements. To be able
to store complete blocks from the input and output
matrices, the maximum size of a matrix block should be
m x m. Let 1 1 (*)p N q m=    , 2 2 (*)p N q m=   
and 3 3 (*)p N q m=    . In general, we first partition A and
B into 2 x 2 block-based matrices as shown in the
example of Fig. 3, in such a way that the sizes of A(1,1)
and B(1,1) are { 1*(*)}x{ 2*(*)}p q m p q m and
{ 2*(*)}x{ 3*(*)}p q m p q m , respectively. The remaining
blocks A(2,1), A(1,2) and A(2,2) of A are decomposed
into blocks with maximum dimension m. B is partitioned
similarly. Blocks A(1,1) and B(1,1) are then partitioned
into 1 x 2p p and 2 x 3p p blocks of size (*) x (*)q m q m
again and are distributed into the processors in a cyclic
checkerboard-like fashion. Nevertheless, there are some
special cases we need to mention. If 1 mod (*) 0N m q = ,

2 mod (*) 0N m q = and 3 mod (*) 0N m q = , then there are
no A(1,2)/B(1,2), A(2,1)/B(2,1) and A(2,2)/B(2,2) pairs.
If 1 0p = , then there are no A(1,1) and A(1,2). Similarly, if

2 0p = , then there are no A(1,1)/B(1,1) and A(2,1)/B(1,2)
pairs. If 3 0p = , then there are no B(1,1) and B(2,1).
These special cases still can be solved by the presented
algorithm.

Cannon’s algorithm asks for row and column
wraparound connections while our machine has only
column wraparounds. In order to solve this problem, the

Sequencer pipes the needed blocks through the Data Bus
into PE (i, 8) (see Fig. 1), instead of PE (i, 1).

A(1,1)

A(2,1)

B(1,1)

B(2,1)

B
(1

,2
)A

(1
,2

)

A(2,2)

B(2,2)

m
m

N1

N2 N3

N2

Fig. 3. A partitioning example for matrices A and B
(3, 1 2, 2 3, 3 3)q p p p= = = =

3.2 Dynamic Task Scheduling on HERA

If the matrices A and B are square, and can be
partitioned into an integer multiple of q, then Cannon’s
algorithm works best in the SIMD mode; all the PEs are
then busy all the time except during the initial alignment.
If the A and B matrices are not square or cannot be
partitioned in such a way that N (the matrix dimension) is
a multiple integer of *q m , then the multiplication of the
border blocks is not efficient in the SIMD mode because
the sizes and numbers of blocks are irregular. Some PEs
are idle while other PEs are busy at some point because
SIMD is a implicitly synchronous mode. We solved this
problem by changing the computation mode of the PEs.
Also, we skip the initial alignment by assigning data
blocks in a pre-skewed way. Because our PE is pipelined,
we assume that multiplication, addition and shift
operations all take one clock cycle, clkT . The total
execution time for Cannon’s procedure on one partition is
approximately 3 2

2() *(2) 2()*c shift mul add clk
n nT n q T T T T
q q

= + + = + ,

assuming that the size of the submatrix is n x n .
The dynamic mixed-mode scheduling procedure for

our modified Cannon’s algorithm on HERA is as follows.

Step 1. Carry out block multiplications involving
(1,1)* (1,1)A B by using Cannon’s algorithm; our

divide-and-conquer technique carries out a total of
1* 2* 3p p p block multiplications. So, the total

time is about 1* 2* 3* (200)cp p p T . All the PEs take
part in this step and are configured into the SIMD
mode.

Step 2. Carry out the summation of intermediate results
for (1,1)* (1,1)A B ; we have a total of 1* 3*(2 1)p p p −
additions of matrix blocks of size 200 x 200.
Again, all the PEs take part in this step and
operate in the SIMD mode.

Step 3. If the size of A(1,2) and/or B(2,1) is larger than
½(*q m), then carry out (1,1)* (1,2)A B and/or

(2,1)* (1,1)A B in SIMD using Cannon’s procedure.
Otherwise, go to Step 4.

Step 4. From now on, a job is a multiplication of two
blocks. Jobs are divided into two groups: SIMD
and MIMD jobs. SIMD jobs are those
corresponding to similar number of operations on
the PEs. The remaining jobs go to an MIMD
queue. Count the number of jobs and their
associated number of operations in the remaining
work. Determine the IDs of PEs that will work in
the SIMD and MIMD mode based on the job
information.

Step 5. Configure individual PEs in the system into either
the SIMD or the MIMD mode based on the
decision in the previous step. The system now
works in the mixed mode. Assign the SIMD jobs
to the PEs running in the SIMD mode and
distribute the MIMD jobs to the PEs running in
the MIMD mode. The host dispatches jobs to the
PEs whenever they are ready for the next job.

Step 6. Let the host assign the addition jobs (i.e., the
addition of blocks belonging to the same block in
the result matrix) to PEs after all the
multiplication jobs are finished.

For the computation of the quadrants in the result
matrix, (1,1)* (1,1),A B (1,1)* (1, 2)A B and (2,1)* (1,1)A B consume
most of the execution time. In all the steps, except Step1,
data locality is a priority factor in job assignment.

4. Performance Results and Analysis

We first implemented our mixed-mode MMM
technique on regular square matrices of size up to 1000 x
1000 by using HERA’s instruction set. The execution
times on HERA are presented in Fig. 4. In order to
compare the performance of modern FPGA-based
machines with that of microprocessors, we also
implemented block-based MMM with C code on two
commercial PCs and comparative results are shown in
Fig. 4. The time for data I/O for all machines is not
included in Fig. 4. The block-based MMM code for the
DELL PCs was optimized by several techniques,
including using the L1 and L2 cache sizes to determine
the best block size, compiler flags and copy optimization
[16]. We can see that our results on HERA are better than
both the dual-Xeon 2.66GHz and the uni-Pentium IV
2GHz systems despite HERA’s much lower clock (i.e.
80MHz). There are several key contributing factors: (1)
HERA, or FPGA-based machines in general, usually have
a much more efficient, application-optimized instruction
set. So they have many fewer instructions than general-
purpose microprocessors for the same application. (2) The
performance gap between microprocessors and memory
chips is growing, while HERA is equipped with tightly
coupled memory; (3) With FPGAs, we can build highly
parallel machines based on the available resources and
take advantage of many optimized parallel algorithms.
Microprocessors are inherently sequential and many

techniques exploring instruction level parallelism (ILP)
suffer from rather small extracted ILP in algorithms and
applications.

The speedups of the parallel implementation on the 64-
PE HERA over the sequential one on an 1-PE HERA are
shown in Fig. 5. The speedup for the 100 x 100 case is
low because the ratio of computation to communication
times is much lower than for the other cases. We could
improve the ratios and speedups in all cases by using a
bigger local memory because the complexity of
multiplication with a single PE for a pair of blocks is
O(n3) and that of communication (i.e. shifting) is O(n2),
where n x n is the block size. With increases in the
problem size, the speedup and, of course, the efficiency
stabilize in a very narrow range. We also evaluated the
performance of mixed-mode scheduling on a variety of
matrices having irregular sizes and shapes. An SIMD
mapping, where the PEs work in the SIMD mode all the
time, was implemented for these matrices and the results
are shown in Table 1. From this table we can see that our
dynamic mixed-mode scheduling can greatly boost
performance when the multiplication of irregular matrices
is needed. This need arises in applications such as the
parallel LU factorization of sparse Block-Diagonal-
Bordered matrices [12].

5. Conclusions

This paper focused on the design of our HERA

machine, a reconfigurable, pipelined computing engine
implemented on platform FPGAs. It is flexible enough to
allow mixed-mode execution of various parallel
processing modes including SIMD, MIMD and M-SIMD.
The system efficiency is improved significantly by
employing several techniques, such as PE pipelining,
pipelined data I/O, a small and optimized set of
instructions, novel memory interface, etc. Taking
advantage of the robustness in our mixed-mode hardware
design, we extended Cannon’s MMM algorithm for
matrices of arbitrary sizes and shapes. The results show
that the system efficiency stabilizes with increases in the
problem size, which shows the good scalability of our
architecture and algorithm. Also, HERA has shown better
peak floating-point performance for a real application (i.e.
MMM) than modern PCs in spite of its much lower
system frequency. Many applications can benefit from
the high-performance and flexibility resulting from
dynamic mixed-mode scheduling; this is especially true
for programs rich in conditional and non-deterministic
operations. Our work shows that new-generation FPGAs
have made feasible the building of highly parallel
complex systems supporting floating-point arithmetic. Of
course, another major advantage is that these systems are
easily accessible and portable. With the anticipated speed
and density improvements for FPGAs, reconfigurable
computers can enter mainstream parallel computing
because they have the potential to narrow the growing
performance gap between algorithms and chips.

6. References

[1] M. D. Theys, T. D. Braun, and H. J. Siegel, Widespread
Acceptance of General-Purpose, Large-Scale Parallel Machines:
Fact, Future, or Fantasy? IEEE Concur., 6(1), January-March
1998, 79-83.
[2] H.D. Simon, The Divergence Problem, 18th International
Supercomputer Conference (ISC2003), Heidelberg, Germany,
June 2003.
[3] J. M. Rabaey, Silicon Platforms for the Next Generation
Wireless Systems – What Role does Reconfigurable Hardware
Play? 10th Intl. Conf. on Field-Program.Logic and Appl. (FPL
2000), Berlin, Germany, 2000, 277-285.
[4] K. Olukotun, B.A. Nayfeh, L. Hammond, K. Wilson and K.
Chang, The Case for a Single-Chip Multiprocessor, Seventh
International Symp. Architectural Support for Programming
Languages and Operating Systems, Oct. 1996, 2-11.
[5] J. M. Baker Jr., S. Bennett, M. Bucciero, B. Gold and R.
Mahajan, SCMP: A Single-Chip Message-Passing Parallel
Computer” The 2002 International Conference on Parallel and
Distributed Processing Techniques and Applications
(PDPTA'02), Las Vegas, NV, June 2002, 1485-1491.
[6] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V.
Lee, J. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S.
Amarasinghe and A. Agarwal, Baring it All to Software: Raw
Machines, IEEE Computer, Sept. 1997, 86-93.
[7] R. Ronen, A. Mendelson, K. Lai, S-L. Lu, F. Pollack and J.
Shen, Coming Challenges in Microarchitecture and Architecture,
Proceedings of the IEEE, 89(3), March 2001.
[8] K. Compton and S. Hauck, Reconfigurable Computing: A
Survey of Systems and Software, ACM Comput. Surveys, 34(2),
June 2002, 171-210.
[9] K. Bondalapati and V.K. Prasanna, Reconfigurable
Computing Systems, Proceedings of the IEEE, 90(7), July 2002,
1201–1217.
[10] M.C. Smith, S.L. Drager, L. Pochet and G.D. Peterson,
High Performance Reconfigurable Computing Systems,
Proceedings of the 44th IEEE 2001 Midwest Symposium on
Circuits and Systems, 2001, Vol. 1, Aug. 2001, 462–465.
[11] K. Underwood, FPGAs vs. CPUs: Trends in Peak Floating-
Point Performance, ACM/SIGDA 12th International Symposium
on Field Programmable Gate Arrays, Monterey, CA, Feb. 2004,
171-180.
[12] X. Wang and S.G. Ziavras, Parallel LU Factorization of
Sparse Matrices on FPGA-Based Configurable Computing
Engines, Concurrency and Computation: Practice and
Experience, 16(4), 2004, 319-343.
[13] H.J. Siegel, M. Maheswaran, D.W. Watson, J. K. Antonio
and M. J. Atallah, Mixed-Mode System Heterogeneous
Computing, in Heterogeneous Computing (M. M. Eshaghian
(Ed.), Artech House, Norwood, MA, 1996).
[14] L. E. Cannon, A Cellular Computer to Implement the
Kalman Filter Algorithm, PhD Thesis, Montana State University,
1969.
[15] http://www.annapmicro.com/.
[16] D. Parello, O. Temam and J. Verdun, On Increasing
Architecture Awareness in Program Optimizations to Bridge the
Gap between Peak and Sustained Processor Performance--
Matrix Multiply Revisited, 2002 ACM/IEEE Conference on
Supercomputing, Baltimore, Maryland, Nov. 2002, 1-11.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

100 x
100

200 x
200

300 x
300

400 x
400

500 x
500

600 x
600

700 x
700

800 x
800

900 x
900

1000 x
1000

Matrix size

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Precision 650: Dual-Xeon 2.66GHz/1GB

Dimension 8200: P-IV 2GHz/256MB

HERA: 64 PEs at 80MHz

Fig. 4. Performance comparison of MMM on HERA
and two DELL PCs (optimized code was run on all the
machines)

44

46

48

50

52

54

56

100 x
100

200 x
200

300 x
300

400 x
400

500 x
500

600 x
600

700 x
700

800 x
800

900 x
900

1000 x
1000

Matrix size

S
pe

ed
up

Fig. 5. Speedup of parallel execution over uni-PE
execution

Table 1. HERA execution times for irregular matrices

(Clock frequency: 80MHz)

Matrix Dimensions

N1 N2 N3

HERA in
SIMD mode

(sec)

HERA in
mixed-

mode
(sec)

Improvement

(%)

105 101 113 0.0179 0.0161 10.1
201 215 323 0.135 0.113 16.3
324 599 315 0.578 0.526 9.8
05 611 613 1.446 1.227 15.1
509 301 201 0.338 0.296 12.4
677 202 677 0.787 0.742 5.7
711 713 403 2.085 1.810 13.2
955 957 976 8.762 8.105 7.5

