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ABSTRACT

In this paper, a vector unit tightly coupled with a
five-stage pipelined scalar processor is designed and im-
plemented on an FPGA platform. This system supports
IEEE 754 single-precision floating-point calculations
and sparse matrix operations. The W-matrix linear
equation solution method for sparse systems is run
on this vector processor. The obtained performance
demonstrates that large linear algebraic equations, a
great challenge to general-purpose processors, can be
solved efficiently on our vector processor.

I. INTRODUCTION

There have been significant FPGA advances in logic
density, speed and architecture in the last decade; SOPC
(System-On-a-Programmable-Chip) designs with FP-
GAs have recently become realizable. Moreover, their
flexibility, fast development cycles and low cost render
FPGA-based SOPC systems attractive for computation-
intensive tasks. SPLASH 2, ArMen, SPISM-I and
DECPeRLe-1 are older FPGA-based systems that
demonstrated benefits for various applications [1].

Vector processors were originally introduced for
supercomputers applied to scientific and engineering
computing; they apply the same operation simultane-
ously to multiple array elements. So matrix operations
can be readily mapped to vector instructions [2, 3].
By exploiting fine-grain parallelism and data locality, a
vector processor is more effective on matrix operations
than traditional superscalars, very long instruction word
(VLIW) processors or multithreaded architectures [4].
In this paper, a vector microprocessor is designed and
implemented on an FPGA platform. The W-matrix
method, which was proposed for power flow analysis
problems [5, 6], is an efficient solution method for
sparse linear equations because of its inherent paral-
lelism; it can also be mapped effectively to a vector
processor. In this paper, several real power network
matrices are used to solve linear equations on our
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Figure 1. Block diagram of the vector processor

FPGA-based system and the execution time is analyzed
to demonstrate high performance.

II. VECTOR PROCESSOR DESIGN AND IMPLE-
MENTATION

Our vector processor, as shown in Fig. 1, is com-
posed of a five-stage pipelined scalar processor and
a vector core. The scalar processor fetches and de-
codes instructions. It does the actual work for scalar
commands and forwards vector instructions to the vec-
tor core. The vector core contains the vector register
file, vector memory unit (VMU), eight floating-point
adders, eight floating-point multipliers and the instruc-
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Figure 2. Vector register file organization



Table I. Execution Times (NNZs: number of non-zeros in the matrix, LU: LU factorization)

Matrix size 20× 20 39× 39 49× 49 118× 118 274× 274

Original NNZs 24 46 59 179 669
NNZs after LU 42 65 80 263 1066

NNZs in W-matrix 52 95 106 407 1567
Clock cycles 2562 3794 3573 9168 35664

Execution time(us) 50.235 74.392 70.059 179.764 699.294

tion cache; it interfaces eight banks of data memory.
Communication between the vector processor and the
host is done through the on-chip dual-port memory.
The vector register file contains eight vector registers;
each has sixteen 32-bit elements. Increasing the number
of vector registers can provide more storage space for
intermediate values, thus reducing the memory band-
width requirements by allowing more operand reuse.
However, for the matrix operations considered in this
paper, data is not reused; in addition, this size for
vector registers can still show the effectiveness of our
design. However, in future work the number of vector
register elements may be increased from 16 to 32,
or 64 for even larger matrices. More vector elements
can amortize the startup time and speedup the overall
execution. To explore vector element parallelism, the
vector registers are interleaved across multiple memory
banks and calculation units, as shown in Fig. 2; each
bank provides five read ports and three write ports,
and these ports are connected to the adder, multiplier
and VMU. The VMU controls all the data transfers
to and from the data memory banks. It supports scalar
load/store, vector load/store and also indexed load/store
for sparse matrices. The execution time for indexed
load/store is not static because different data storage
patterns in the eight data memory banks may result in
different contention patterns. In our implementation, an
ad hoc circuit is included to guarantee that the indexed
load/store finishes in the shortest time. In addition,
floating-point IP (Intellectual Property) FPGA cores
purchased from Quixilica are used to implement the
floating-point adders and multipliers.

Our vector processor is embedded in one of the two
Xilinx XC2V6000 FPGA chips on the Annapolis Micro
Systems WILDSTAR-II board [7]. In our implementa-
tion, the processor occupies 14,842 slices on the chip,
which is equivalent to 1.652 million system gates in
ASIC design. The speed level of our XC2V6000 chip is
-5 and the vector processor can run at 51MHz. All these
numbers are obtained after the place and route phase of
the implementation. Although the frequency is limited
by current FPGA structure and technology features,
the vector system still provides a high-performance
platform because it has a simplified instruction set,
abundance in calculation units, tightly coupled memory
and a well-defined data storage scheme. With ever
improving FPGA technology, even higher performance
of this vector implementation on FPGA-based SOPC

platforms should be guaranteed in the future.

III. PERFORMANCE RESULTS AND CONCLUSIONS

To test the performance of the proposed vector
system, the W-matrix method was implemented. By
employing the W-matrix method, the problem of solv-
ing sparse linear equations can be turned into several
steps of matrix multiplication. Further, in each step
calculations can be executed in parallel [5, 6]. Thus,
the W-matrix method can yield better performance on
SIMD, MIMD or vector processors than the sequential
substitution scheme in the conventional approach. For
the sake of brevity, we do not present here the details
of the W-matrix method.

Several linear equations represented by sparse ma-
trices for real power networks were solved on our
vector processor. The execution times on the FPGA
platform are shown in Table I. It can be concluded
that the execution time for solving linear equations
with matrices of size up to274 × 274 is less than
a millisecond despite the 51MHz low frequency of
the FPGA. More recent FPGAs, could improve the
performance even further.
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