This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Replicating Tag Entries for Reliability Enhancement
in Cache Tag Arrays

Shuai Wang, Member, IEEE, Jie Hu, Senior Member, IEEE, and Sotirios G. Ziavras, Senior Member, IEEE

Abstract—Protecting on-chip cache memories against soft errors
has become an increasing challenge in designing new generation
reliable microprocessors. Previous efforts have mainly focused on
improving the reliability of the cache data arrays. Due to its crucial
importance to the correctness of cache accesses, the tag array also
demands high reliability against soft errors. Exploiting the address
locality of memory accesses, we propose to duplicate most recently
accessed tag entries in a small tag replication buffer (TRB) thus
to protect the information integrity of the tag array in the data
cache. Experimental results show that our proposed TRB scheme
achieves a high 90% access-with-replica (AWR) rate with low per-
formance (~0%), energy (16.3%), and area (19.9%) overheads.
We also conduct a detailed design space exploration for the TRB
design and propose a selective TRB scheme that achieves a higher
AWR rate (97.4%) for the dirty cachelines with negligible over-
heads. To provide a comprehensive evaluation of the tag-array re-
liability, we further conduct an architectural vulnerability factor
(AVF) analysis for the tag array in the data cache and propose a
refined metric, detected-without-replica-AVF (DOR-AVF), which
combines the AVF and AWR analysis. Based on our DOR-AVF
analysis, a selective TRB scheme with early write-back (S-TRB-
EWRB) is proposed, which achieves a zero DOR-AVF and 100%
AWR rate at a negligible performance overhead. Results from sta-
tistical fault/error injection experiment also confirm the effective-
ness of our TRB schemes and the achieved reliability of the cache
tag array that recovers 100% of detected errors.

Index Terms—Cache tag array, reliability, soft error, tag repli-
cation buffer (TRB).

I. INTRODUCTION

ONIZING radiation induced single-event upsets (SEUs),
I also known as soft errors, in semiconductor memories have
been recognized for a long time as a major reliability issue in
electronic systems [1], [2]. Due to their large share of the tran-
sistor budget and die area, on-chip caches suffer from a sig-
nificantly higher soft-error rate (SER) than other on-chip com-
ponents at the current and near future technologies [3]. An in-
correct data value once read out from the cache may crash the
subsequent computation/communication, external memory, or

Manuscript received May 18, 2010; revised September 12, 2010 and De-
cember 08, 2010; accepted January 15, 2011. A preliminary version of this
work was presented at the IEEE Computer Society Annual Symposium on VLSI
(ISVLSI 2010).

S. Wang is with the Department of Computer Science and Technology, Nan-
jing University, Nanjing 210093, China (e-mail: swang @nju.edu.cn).

J. Hu and S. G. Ziavras are with the Department of Electrical and Com-
puter Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA
(e-mail: jhu@njit.edu; ziavras @njit.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2011.2111469

storage systems, leading to an overall system failure or program
inaccuracy. As a critical requirement for reliable computing [4],
protecting the information integrity in cache memories has cap-
tured a wealth of research efforts [4]-[13].

Recent work has made progress towards the cache vulnera-
bility analysis and reliability optimization based on the analysis
[5], [11], [13]-[17]. For example, early write-back schemes [8],
[13], [15] were proposed to reduce the vulnerability factor (VF)
of dirty cachelines in a write-back data cache. Information re-
dundancy is another fundamental approach in building reliable
memory structures. Various coding schemes, such as the parity
and ECC codings, are used to enhance information integrity in
latches, register files, and on-chip caches, providing different
levels of reliability at different performance, energy, and hard-
ware costs. Another form of information redundancy is to main-
tain redundant copies of the data items in the cache memories
[9], [18]. While most of the previous work is targeting at im-
proving the reliability of the data array in on-chip caches, few
researchers have directed their attention to the reliability charac-
terization and optimization of the cache tag array. Soft errors oc-
curring in the tag array raise the possibilities of the false hit and
false miss [17], [19]. False hit will cause an incorrect execution
by loading data from or updating a wrong cacheline. False miss
in a dirty cacheline will load stale data from the lower cache.
Moreover, in a writeback cache, if the tag of a dirty cacheline is
flipped by the soft error, the cacheline will be written back to a
wrong location in the lower cache. Therefore, due to its crucial
importance to the correctness of cache accesses, the tag array
demands high reliability against soft errors. Furthermore, as the
memory address space increases, e.g., from 32- to 64-bit, the
die area of the tag array will also increase, which makes it more
vulnerable to soft errors.

The parity coding scheme is widely used to protect the
on-chip L1 caches in today’s reliable microprocessors such
as Intel Itanium [20], Itanium 2 [21], and IBM Power6 [22]
processors due to its low cost. However, simple parity coding is
only capable of detecting an odd number of bit errors without
error recovery capability. On the other hand, error correcting
codes (ECCs) typically provide single error correction and
double error detection (SEC-DED). Nevertheless, the perfor-
mance overhead and additional energy consumption due to
ECC encoding/decoding make ECC a reluctant choice for
high speed on-chip L1 caches [4]. Instead, ECC codings are
widely adopted in L2/L3 caches that can tolerate longer access
latencies [20]-[22]. The only exception is AMD Opteron server
processors [23] in which the data array of the L1 data cache is
ECC-protected and its tag array is still parity-protected. Note

1063-8210/$26.00 © 2011 IEEE

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

that soft errors occurring in tag entries of dirty cachelines in the
L1 data cache cannot be recovered by the parity coding.

Exploiting the address locality of memory accesses, we pro-
pose in this paper a tag replication buffer (TRB), a small buffer
that captures and maintains the replicas of frequently accessed
tag entries, to enhance the reliability of the tag array in the L1
data cache. We perform a detailed design space exploration
for the TRB implementation and propose several optimized
schemes to improve the tag array reliability as well as to reduce
the area and energy overheads of the TRB. To further improve
the protection effectiveness and the provided reliability of the
TRB, we then propose a selective TRB (S-TRB) scheme that
only duplicates tag entries for dirty cachelines, which demand
much higher reliability than clean cachelines. Note that the
S-TRB exploits the fact that most latest high-performance
microprocessors have L.2/L.3 caches (both data and tag arrays)
protected by ECC codings and also assumes the single-bit error
incident to a tag entry if any. Our experimental results show that
the S-TRB scheme can achieve a 97.4% access-with-replica
(AWR) rate with minimum overheads. In order to provide a
comprehensive evaluation on the reliability of the cache tag
array, we conduct a cache tag vulnerability factor analysis and
propose a refined evaluation metric detected without replica
(DOR) AVF that combines the AVF and AWR analysis. Based
on our DOR-AVF analysis, a new TRB scheme with early
write-back (S-TRB-EWB) triggered by a replacement in the
TRB is proposed, which can achieve a 100% AWR rate and
a zero DOR-AVF for the tag entries of dirty cachelines with
a minimum performance and energy overhead. To further
verify the effectiveness of the proposed TRB schemes and the
achieved tag array reliability with a TRB, statistical fault/error
injection experiment is performed to randomly inject a fixed
number of soft errors into the tag array and the replication
buffer during the simulation. Our experiment results show that:
1) all errors in accessed erroneous tags are detectable single-bit
errors; 2) the base TRB recovers 37.0% and 18.9% of detected
errors in clean and dirty cacheline tags; 3) the S-TRB improves
the recovery rate to 42.9% for dirty cacheline tags; and 4) the
S-TRB-EWB achieves a full recovery rate of 100% for detected
errors, which confirms its DOR-AVF analysis.

The rest of this paper is organized as follows. Section II
discusses some related work. Section III describes the proposed
tag replication buffer (TRB) design. The design space of TRB is
studied in Section IV. In Section V, several optimized schemes
including the S-TRB are proposed. In Section VI, we analyze
the tag array vulnerability to soft errors and propose our new
reliability evaluation metric and the derived S-TRB-EWB
scheme. The experimental setup and evaluation are presented
in Section VII. Section VIII concludes this work.

II. RELATED WORK

The fault behavior of the content addressable memory (CAM)
tags has been studied and single-error tolerant solutions were
provided in [24]. A functional level framework was also pro-
posed in [25] for implementing a fault-tolerant/self-checking
CAM architecture, with a focus on CAM cell designs. Com-
pared to the hardware circuit solutions in [24] and [25], our
scheme focuses on the microarchitecture design of the reliable

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

cache. Biswas et al. [19] presented some initial efforts on vul-
nerability analysis of the tag array. Reference [17] proposed a
detailed lifetime model to characterize the vulnerability of the
tag array in both the L1 data and instruction caches. However,
they did not provide any reliability optimization schemes specif-
ically for the tag array. In this paper, we propose a TRB scheme
to improve the reliability of the tag array in the data cache by
exploiting the address locality of memory accesses. In [26], a
caching address tag (CAT) scheme was proposed to reduce the
area cost of the cache tag arrays. Due to the CAM implemen-
tation of the pointer part in the tag side, the CAT design will
incur extremely high energy consumption caused by the CAM
search operation in addition to its area overhead, if the tag cache
is directly adopted as a replication buffer for reliability improve-
ment. Zhang [27] proposed to add a replication cache (R-Cache)
to enhance data cache reliability. R-Cache mainly focuses on the
data array reliability improvement in the data cache while ours is
on the tag array. R-Cache does not provide any explicit scheme
for protecting the tag array, nor can it handle erroneous tag situ-
ations. Moreover, R-Cache needs to be updated on every cache
write operation while our TRB is only accessed when the copy
bit of the original tag entry accessed is zero. With very high ac-
cess-with-replica rates (>90%), our scheme incurs significantly
less frequent TRB accesses and is much more power-efficient.

III. MICROARCHITECTURE OF THE TRB DESIGNS

A. Basics of the TRB Design

Microprocessor issued memory accesses exhibit various lo-
calities. The address locality is a form of locality due to the spa-
tial and temporal locality of memory accesses. It means that if
a memory address is referenced at a particular time, the same
address and its nearby memory addresses are very likely to be
referenced in the near future. In other words, only a small set of
the memory addresses are referenced during certain execution
time intervals. Since the tag entry of a cacheline is the higher
portion of the referenced address, it has a better locality prop-
erty than the full memory address. We call this address locality
cache tag locality (CTL). Exploiting the CTL, we propose to du-
plicate the tag entries in a small cache-like structure, called the
tag replication buffer (TRB), to enhance the reliability of the tag
array in the data cache.

Our TRB design is an information redundancy based reliable
scheme. However, simply keeping two or more identical copies
of the tag array is not area and energy efficient. By exploiting
the CTL, a small TRB (e.g., 32 entries) can capture most of
the tag references. Thus, by keeping the most recently accessed
(MRA) tag entries in the small TRB, we can achieve a high
AWR rate, providing a high reliability for the tag array. Notice
that although the TRB design studied in this work is targeting at
the data cache, it also applies well to the instruction cache since
the instruction cache has a better locality than the data cache.

B. Microarchitecture of the TRB

One of the key issues in the TRB design is how to locate
the replica entry in the TRB and how to identify the original
tag with its replica. In [26], a similar caching scheme CAT was
proposed to optimize the area of the tag array. Since the CAT

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

WANG et al.: REPLICATING TAG ENTRIES FOR RELIABILITY ENHANCEMENT IN CACHE TAG ARRAYS 3
Tag Array
Tag Array way O way |
way 0 vyl Tag Repl. Buffer (TRB) Tag o]0
XXXXX! Tag 0|0 X
— — TagPart Pointer Part
—
Tag Repl. Buffer (TRB)
: 1)1 Tag 101..1] 1
11 Tag : 7 Tag 1[0
: 00110} Tag 1)1
Parity
Parity Tag Prt o .
— Valid Bit Set pointer
Valid Bit Tag Value o ﬁ —— Tag Value Way pointer Tag Part]
ointer Part Tag Pai . Copy Bit Copy Bit
Tag Pointer Parity Parity
Tag Value Set + Way

(a)

(b)

Fig. 1. Block diagrams of the TRB-CAT and TRB-PTR designs. (a) TRB-CAT microarchitecture. (b) TRB-PTR microarchitecture.

scheme aimed at area reduction, it replaces the original tag array
with a CAM structure that only stores the pointers to the tag
cache (TC) [26]. For our reliability designs, we adopt the pointer
design and modify their scheme by putting back the original
tag array and using the tag cache for replicating tag entries, as
the TRB-CAT design given in Fig. 1(a). The pointer part is at
the original tag array side. Each tag entry in the original tag
array is associated with a pointer pointing to the location of its
replica in the TRB. The TRB entry only contains the tag replica.
An additional one bit (copy bit) is added for each original tag
entry to indicate whether it has a replica in the TRB or not. In
TRB-CAT, accessing the replica of a tag entry is very simple
and efficient by directly following the pointer stored with the
tag entry. Another advantage of the TRB-CAT design is that
multiple entries in the tag array can share the same replica in
the TRB, which has been discussed in [26]. To support that, the
TRB also needs to be implemented as a CAM structure. When
a new replica is to be added to the TRB, a CAM search needs
to be performed to check whether the tag value is already in
TRB or not. If it is, a pointer is returned to the tag entry in the
tag array and this tag entry will share the replica with other tag
entries. Otherwise, a TRB replacement shall be performed in
case that all TRB entries are occupied. A replaced TRB entry
will subsequently invoke a CAM search in the pointer part of
the tag array in order to clear the copy bit of tag entries pointing
to (sharing) this replica. Notice that the CAM implementation,
especially of the pointers in the tag array may incur significantly
high area and energy overheads.

To address the potential area and energy issues in the
TRB-CAT design, we propose a second TRB-PTR design that
moves the pointer part from the tag array to the much smaller
TRB side, as shown in Fig. 1(b). In this TRB-PTR design, each
entry in the TRB has an additional space to store a pointer. The
pointer contains two parts: the set pointer and the way pointer.
The set pointer indicates the set of the original tag entry and
the way pointer indicates the way of the original tag entry in a
set-associative cache. Notice that the way pointer is not needed
in a directly-mapped cache. The copy bit in the original tag
array is also needed to indicate whether the tag has a replica or
not. For both designs, a valid bit is added to each entry in the

tag replication buffer to indicate whether it is a valid or invalid
tag replica. If a tag entry with replica (its copy bit is set) needs
to access its replica in the TRB, its set index and way number
are used to perform a CAM search within the pointer part in the
small TRB, which shall be power/energy efficient due to the
small size. Furthermore, the process of adding a replica to the
TRB-PTR is dramatically simplified. If TRB has free (invalid)
entries, a tag replica with the set and way pointers is directly
created using a free TRB entry. Otherwise, a TRB replacement
is required and the selected victim entry simply clears the
copy bit in its original tag entry that is directly located by the
victim’s set and way pointers. It should be noted that TRB-PTR
achieves its simplicity and efficiency by avoiding the sharing
of a tag replica among multiple tag entries. On the other hand,
the replication rate in TRB-PTR might not be as good as in
TRB-CAT due to the 1-to-1 mapping (from the replica entry
to the tag entry) in the TRB-PTR design. Nevertheless, our
experimental results show that the TRB-CAT design incurs an
extremely high area and energy overhead, of 39.1% and 172%,
respectively, which makes it not a cost-effective TRB design.
Thus, in the following sections, we focus on the TRB-PTR
design and further explore its design space and optimizations.
Note that the terms TRB and TRB-PTR are used interchange-
ably in the following discussion.

IV. EXPLORING THE DESIGN SPACE OF THE TRB

A. How to Deal With Soft Errors

In the TRB design, all the tag bits including the original ones
and the replicas in the TRB are protected by parity coding. If
the single-bit error model is assumed, all errors occurring in the
tag array can be detected but not recovered with parity coding.
When a tag entry is accessed, the parity checking is performed.
If it passes the check, there is no error in the tag. The normal
routine of the cache access will continue. If the parity checking
fails, the copy bit is examined. If the copy bit is one, it means that
this tag has a replica in the TRB. Then, the TRB is accessed and
the replica is read out for error recovery. If the replica passes the
parity checking, we can recover the original tag by copying back
from the replica. If the copy bit is zero or the parity checking

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

of the replica fails, the error in the original tag entry cannot
be corrected by the TRB design. Since the probability of error
occurring in both the original tag and its replica is extremely
low, we use the AWR rate, which is the ratio of the tag accesses
with a replica in the TRB over the total number of tag accesses,
as one of the evaluation metrics for the TRB design. The higher
AWR rate indicates higher reliability of the tag array. Notice
that the pointer entry either in the tag array or in the TRB as
well as the valid and copy bits are also protected by the parity
coding.

B. When to Duplicate

A common issue in the information redundant strategy is
when to make a redundant copy. In the TRB design, we explore
two mechanisms to create replicas: 1) duplicating with a new
cacheline (DNC)—making a replica in the TRB when a new tag
entry is written into the tag array, i.e., at the time when a new
cacheline is brought into the data cache from the L2 cache and
2) duplicating with a TRB miss (DTBM)—making a replica
when the original cacheline is hit and there is no replica in the
TRB for its tag entry, i.e., the copy bit in its tag entry is zero.

Based on these two mechanisms, we propose two duplication
schemes. The first one is the DNC-only scheme in which we
only make the replica with a new cacheline. The other one is
the DNC+DTBM scheme in which we make the replica in both
conditions, i.e., when a new cacheline is written into the data
cache or when a hit cacheline does not have a tag replica in the
TRB. Basically, if we choose the DNC+DTBM scheme, we can
keep more recently accessed tag entries in the TRB to achieve
a higher AWR rate. However, the DNC+DTBM scheme will
incur more control overhead and energy consumption than the
DNC-only scheme.

C. Replacement Policies in the TRB

In order to exploit the tag locality, the LRU (least recently
used) policy is a good choice to select the victim entry in the
TRB. However, the LRU information needs to be updated upon
every tag access. Due to the highly-frequent updating operations
and the implementation complexity, the LRU policy will incur
high energy and area overheads. Therefore, we also study the
first-in first-out (FIFO) and Random policies in the TRB, both
of which are less expensive to implement. The FIFO policy can
be implemented with a queue structure and a head pointer in-
dicating the head of the queue. In the random policy, a random
number is generated to determine the victim entry in the TRB.

D. What to Do Upon Replacement

In the TRB side, if we need to make a replica for a tag entry
while all the entries in the TRB are occupied, a victim entry
needs to be selected according to the replacement policy ap-
plied. In the TRB-PTR design, no pointer search operation is
needed, since the original tag of the victim entry can be directly
located by its pointers due to the 1-to-1 mapping property. Then,
the copy bits in the located tag entry is cleared to zero. After that,
the victim entry along with the pointer bits are replaced by the
new value. In the cache side, if a cacheline is to be replaced due
to a cache miss and the copy bit in its tag entry is one, the replica

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

in the TRB needs to be located and the valid bit of the replica
entry is reset to zero.

V. OPTIMIZING THE TRB DESIGN

A. Improving the Replacement Policy: LRU+ and FIFO+

In the DNC duplication scheme, when a new cacheline is
brought into the cache, a victim entry needs to be selected
in the TRB for the replica. Normally, the victim entry is se-
lected through the LRU or FIFO policy as we discussed in
Section IV-C. However, most of the new cachelines will cause
the replacement of another valid cacheline in the cache. If
that cacheline has a tag replica in the TRB, the corresponding
replica will be located and invalidated as we discussed in
Section IV-D. In that case, it should be beneficial to use that
invalidated entry as the victim entry instead of applying LRU or
FIFO policy, which may replace valid replicas used by other tag
entries. We call this new improved replacement policy LRU+
or FIFO+. To support the LRU+ or FIFO+ replacement policy,
the DNC duplication logic is slightly modified to wait till the
replacement in the cache side is completed and the victim tag
replica in the TRB is located and invalidated if any. Then the
new tag value and pointers will be written into the selected TRB
entry without performing explicit LRU or FIFO replacement in
the TRB.

B. Tag Value Compression

From our profiling results using the SPEC CPU2000 bench-
mark suite, we observed that only part of the entire set of tag
bits is needed in order to resolve the tag conflict. These short tags
have been identified as the active tags and studied for power op-
timization of tag arrays in [28]. In our simulated processor when
running the benchmark suite, the leading (higher) 15 bits of the
entire tag entry (33 bits) almost never change during the execu-
tion. Therefore, we propose to adopt tag value compression to
improve the area and energy efficiencies of our TRB designs.

1) TRB Side Compression (TBSC): To reduce the area and
energy overheads of the TRB, we propose our first tag value
compression scheme TBSC, shown in Fig. 2. The higher 15 bits
of the tag replica in the TRB, which remain unchanged during
the execution, are stored in a special register called high tag
register (HTR) protected by parity coding. The remaining 18
bits are stored in the TRB similar to the original TRB design.
When there is a TRB write operation, we only write the lower 18
bits to the TRB. If we need to recover the error from the replica,
the values in the HTR and TRB are read out simultaneously to
form the entire tag entry. Since the bit size of the TRB is reduced
in this scheme, the area and energy overhead of the TRB will be
reduced.

Notice that in this tag value compression scheme, we assume
that the higher 15 bits of the tag remain unchanged during the
execution, which is based on our profiling results. Therefore, we
only need to write the HTR once at the very beginning of the
program execution. However, for other applications, the higher
15 bits may change. In that case, we can use compiler support to
identify that particular code region similar to [28]. A special in-
struction can be inserted to disable the TRB scheme during the

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

WANG et al.: REPLICATING TAG ENTRIES FOR RELIABILITY ENHANCEMENT IN CACHE TAG ARRAYS 5

ity Bi Tag Repl. Buffer
HTR Parity Bit g Rep
High 15 bits |f|

Valid Bit Tag Part Pointer Part

—

0| 1| Low I8bits [101...1| 1
Parity Bit
Bits [32..18] Bits [17..0]

Bits [32..0]

Tag Comparison

Fig. 2. Block diagram of the TBSC design.

Tag Array

Gating Disable Parity Bit

b

HTR Parity Bit ECC Bits . R
Compression Bit

Bits [32..18]| |1011o|

Bits [32..18] Bits [17.0] [1[1|0

Bits [32..18]__V /y
MUX

Bits [32..18] Bits [17..0]
Bits [32..0]

Tag Comparison

Copy Bit

Fig. 3. Block diagram of the TASC design.

execution of that code region, which leaves the tag array unpro-
tected by replicas. Fortunately, this situation rarely happens and
the impact on the reliability of our TRB design is negligible.
2) Tag Array Side Compression (TASC): To further reduce
the energy consumption in the tag array, we propose the second
tag value compression scheme TASC, shown in Fig. 3. Different
from TBSC, our TASC scheme moves the HTR from the TRB
side to the tag array side. The higher 15 bits of the original tag
array are gated for energy savings. The HTR is protected by
both parity and ECC codes. During a normal access, the value
in the HTR and the lower 18 bits in the tag array are read out,
followed by the parity code checking. If the parity checking
fails in the HTR, then the ECC code is used to recover from
the error, since a single-bit error model is assumed throughout
this work. The lower 18 bits or the entire 33 bits of the tag can
be protected by the original TRB scheme. Note that if the exe-
cution enters the special code regions we discussed above, the
gating to the higher 15-bit portion of the tag array is disengaged.

In this ungated mode, if a compressed tag is accessed, the tag
needs to be restored by using an additional compression bit in
the tag entry that selects the readout either from the higher 15-bit
tag portion (for uncompressed tags) or from the HTR register
(for compressed tags), as shown in Fig. 3. Furthermore, if the
TRB only replicates the lower 18 bits of the tag, the TRB has to
be disabled for uncompressed tags. However, if the TRB keeps
the replicas of the original 33-bit tags, the TRB can be still in
active protection when the program enters the aforementioned
special regions, which makes the tag compression an indepen-
dent power/energy/area optimization. Therefore, in our TRB de-
sign with this TASC compression, the TRB duplicates the entire
33-bit tags.

C. Selective TRB Schemes for Improving Protection
Effectiveness

Recent work [8], [12] claimed that dirty cachelines should
have higher priority to be protected than the clean cachelines
in a write-back data cache. The clean cachelines in the L1 data
cache have their copies in the L2 cache, which can be used to
recover from soft errors if the L2 cache is protected by some
highly reliable error coding schemes (e.g., ECCs) and is error
free, assuming a single bit error model. Unlike the clean cache-
lines, the dirty cachelines do not have replicas in the L2 cache.
Therefore, we need schemes more reliable to protect the dirty
cachelines. When it comes to the tag array, the consequences of
an error-corrupted tag entry are different from that of a cache-
line. If the tag of a clean cacheline was hit by soft errors and
is detected by the parity checking during a cache access, this
cacheline can be simply invalidated and possible reused to serve
a later cache miss. On the other hand, if the tag of a dirty cache-
line is soft-error corrupted, the latest data will be lost if the error
in the tag is detected but however not recovered. Thus, in terms
of reliability requirement, tags of dirty cachelines definitely de-
mand a higher protection. Based on that, we propose a selective
TRB (S-TRB) scheme that only duplicates tags of dirty cache-
lines. This S-TRB scheme is expected to have a better AWR
rate compared to the original one, since it reduces the number
of tag entries that need to be duplicated. Basically, the less dirty
cachelines the data cache has during the execution, the better
AWR rate the S-TRB can achieve.

D. Performance Impact

For aregular cache access, tags will be read out and compared
with the address tag field. Simultaneously, the parity codes are
checked for errors. If there is no error in the tag, the normal rou-
tine of the cache access will continue. Meanwhile, in the DTBM
scheme, the copy bit will be also checked. If it is 0, the dupli-
cation routine will be triggered. Since most of the accessed tags
should have replicas and the duplication is not on the critical
path of the pipeline, the performance impact due to the dupli-
cation is trivial. If the parity checking fails, the error recovery
routine discussed above will be triggered, which may hurt the
performance. However, due to the extremely low error rate in
the real world, the recovery routine is rarely triggered and the
performance degradation due to the error recovery should be
negligible.

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

VI. AVF ANALYSIS OF TAG ARRAYS

A. Lifetime of Tag Arrays

In order to characterize and optimize the on-chip cache re-
liability against soft errors, recent papers [5], [11], [13]-[17]
present some initial efforts towards cache vulnerability analysis.
References [17] and [19] also propose some lifetime models to
analyze the vulnerability of the tag array. To evaluate our TRB
design, we conduct a similar vulnerability analysis on the tag
array based on the lifetime model in [17]. The cache tag vulner-
ability factor is defined as the average rate of tag items in vulner-
able phases over the total tag items that the cache can accommo-
date during execution. If the single-bit error model is assumed, a
false hit [17], [19] will happen only when the tag has one single
bit different from the incoming address tag and this particular
bit is flipped by a soft error. However, if a tag entry whose orig-
inal value matches the incoming address tag is hit by a soft error
at any bit location, a false miss will happen. Depending on the
state of the cacheline, the consequences of a false miss are dif-
ferent. If it is a clean cacheline, a false miss only incurs one
extra cache miss without causing any correctness problem. On
the other hand, a false miss to a dirty cacheline will cause the
loss of all updates to the cacheline and reload a stale copy from
the L2 cache, resulting in data loss and erroneous data. There-
fore, based on this hamming-distance-one (HDO) analysis [19],
the lifetime of a tag entry in a write-back cache can be divided
into six phases: RH, FWPL, RHFW, HFW, HPL, and Invalid.

* RH: Lifetime phase between the first read and the last Ham-

ming-distance-one (HDO) match of a clean cacheline.

* FWPL: Lifetime phase between the first write and the re-

placement of a dirty cacheline.

e RHFW: Lifetime phase between the first read and the last

HDO match before the first write of a dirty cacheline.

* HFW: Lifetime phase between the last HDO match and the

first write of a dirty cacheline.

e HPL: lifetime phase between the last HDO match and the

replacement of a clean cacheline,

e Invalid: Lifetime phase in the invalid state.

Fig. 4 shows the correlation among the lifetime phases for
typical tag activities. The RH, FWPL, and RHFW phases are vul-
nerable because errors occurring in the RH and RHFW phases
will cause false hits, and errors occurring in the FWPL phase
will cause incorrect writebacks to the L2 cache or erroneous
data load. Note that all tag bits in the FWPL phase are vulner-
able. Phases HFW, HPL, and Invalid are non-vulnerable because
errors occurring in the HFW phase will only cause a false miss on
the first write in a clean cacheline, and errors occurring in the
HPL phase will be discarded on replacement. Notice that the
vulnerability analysis based on this lifetime model is performed
at the tag bit level.

B. DOR AVF

The above AVF analysis assumes no error protection
schemes, such as parity or ECC codings. Note that our TRB
design by default is protected by the parity coding. If the
single-bit error model is assumed, in the parity-protected tag
array, all single-bit errors will be detected by the employed
parity coding, and thus the original silent data corruption

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Read Miss
First Read Tag Comparison Last HDO Match Replace
Invalid RH HPL
(a)
Write Miss
First Write ‘Write/Read Replace
Invalid FWPL
(b)
Read Miss
First Read Last HDO Match First Write Replace
Invalid RHFW HFW FWPL

(©)

Fig. 4. Tag lifetime of a cacheline in the writeback cache. (a) Clean line. (b)
Dirty line. (c) Dirty line.

(SDC) AVF is converted into detected unrecoverable error
(DUE) AVF. However, for a clean cacheline with a detected
error in its tag, if we assume that the L2 cache is protected
by some means of ECC codings and is error free under the
single-bit error model, this single-bit error can be recovered by
invalidating the cacheline and reloading it from the L2 cache.
Thus, these single-bit errors in tag entries of clean cachelines
are detected recoverable errors (DREs). If an error hits the tag
of a dirty cacheline, the updates to the cacheline will be lost
since the tag cannot be recovered, which contributes to DUE.
From work [17] and our simulation results, the FWPL phase
contributes the most to DUE-AVF in the data cache tag array.
Therefore, protecting the tag entry of a dirty cacheline should
have a much higher priority than that of a clean cacheline.

To evaluate the reliability provided by our TRB design, we
introduce a refined AVF metric that combines the vulnerability
factor and AWR analysis. It converts the tag DUE-AVF of a dirty
cacheline into two categories: DOR AVF and DWR AVF. The
DUE-AVF portion of the DWR-AVF is contributed by the fact
that the tag replica is also corrupted by soft errors. Since the
situation that there are errors in both the tag entry and its replica
rarely happens, lower DOR-AVF means higher reliability in the
tag array. If the strong assumption is made that an error affected
tag can always be recovered from its replica, the DWR-AVF
will be converted into the DRE-AVF. A summary of this AVF
classification in the context of our TRB schemes is given in
Fig. 5.

C. AWR Versus DOR-AVF

From the previous discussion, our S-TRB should be a good
choice to reduce DOR-AVF of the tag array in the data cache by
providing a higher tag replication rate for dirty cachelines. Note
that all the duplication and replacement policies studied so far
in the TRB design are aiming at protecting the most recently
accessed tags by exploiting the address locality. However, the
major contributors to the tag AVF are the phases with no ac-
cess activity [17]. In other words, our S-TRB scheme may not

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

WANG et al.: REPLICATING TAG ENTRIES FOR RELIABILITY ENHANCEMENT IN CACHE TAG ARRAYS 7

Tag AVF

Clean Tag AVF Dirty Tag AVF

l
| \
w/ Replica in TRB w/o Replica in TRB
DWR_AVF DOR_AVF

Error-Free Replica ~ Error—Corrupted Replica

l l

DRE AVF DUE AVF

DRE AVF DUE AVF

Fig. 5. AVF classification in the context of our TRB designs. A single-bit error
model is assumed for both the tag array and the TRB.

have a high replace-with-replica (RWR) rate, which is the ratio
of the tag replacements with a replica in the TRB over the total
number of tag replacements. To summarize, in order to achieve
a high AWR, we need to protect the frequently accessed tags.
However, to significantly reduce the DOR-AVF, we may need
to give priority to dirty cacheline tags with a long dead time. In
other words, an optimized TRB scheme driven by AWR opti-
mizations does not necessarily lead to an optimized DOR-AVF.
Therefore, a TRB design that achieves both a high AWR rate
(i.e., with priority of protecting most frequently accessed tags)
and a low DOR-AVF number (i.e., with priority of protecting
most vulnerable tags) is of paramount importance to the provi-
sion of high reliability to the tag array.

D. TRB Replacement Triggered Early Write-Back in Data
Cache

A direct solution to reduce the DUE-AVF is to use write-
through data caches. A non-protected write-through data cache
has a very low AVF in the tag array. In a parity-protected write-
through data cache, the tag array does not have the DUE-AVF
since all single-bit errors in the tag array of the data cache can
be recovered from the ECC-protected error-free L2 cache. How-
ever, due to the performance degradation and the significantly
increased accesses to the L2 cache [13], [15], the write-through
data cache is not preferred for applications that require high per-
formance and low energy consumption.

In order to achieve both a high AWR and a low vulnerability
factor, we propose a new TRB scheme with early write-back
(EWB) in the data cache that is triggered by TRB entry replace-
ment. In this S-TRB-EWB scheme, we only duplicate tags of
dirty cachelines, which is similar to the S-TRB scheme. When
a replica entry in the TRB is replaced in the S-TRB-EWB
scheme, its corresponding dirty cacheline will be forced to
write back to the L2 cache. Therefore, all the tags of dirty
cachelines have their replicas in the TRB and those dirty
cachelines that are to lose their replicas in the TRB will become
clean due to the early write-back. Since the replacement in
the TRB does not occur frequently with a high AWR rate, the
S-TRB-EWB scheme incurs much less L2 cache accesses than
the write-through scheme. Notice that our early write-back
scheme in the data cache is deterministic and not prediction
based, which is significantly different from the dead-time based
early write-back schemes in [13], [15]. Most importantly, our

TABLE 1
PARAMETERS OF THE SIMULATED PROCESSOR

[Processor Core
Datapath Width

4 inst. per cycle

Int Issue Queue 20 entries
FP Issue Queue 15 entries
Load/Store Queue 64 entries
Active list (ACL) 80 entries

Int Register File
FP Register File
Function Units

80 registers

72 registers

4 IALU, 2 IMULT/IDIV

2 FALU, 1 FMULT/FDIV/FSQRT
2 MemPorts

[Branch Predictor |

Branch Predictor Alpha 21264 tournament predictor

32-entry RAS

BTB 2048-entry 2-way

[Memory Hierarchy |
L1 I/DCache 64KB, 2 ways, 64B blocks, 2 cycles
L2 UCache 4MB, 8 ways, 128B blocks, 12 cycles
Memory 225 cycles first chunk, 12 cycles rest
TLB Fully-assoc., 128 entries

S-TRB-EWB scheme achieves a 100% AWR rate for dirty
cachelines and reduces the DOR-AVF to zero.

VII. EVALUATION

A. Experimental Setup

We derive our simulators from SimpleScalar V3.0 [29] to
model a contemporary high-performance microprocessor sim-
ilar to Alpha 21364. In the new simulator, the original register
update unit (RUU) structure is replaced by a separated integer
issue queue, a floating-point issue queue, an integer register file,
a floating-point register file, and the active list (a.k.a., the re-
order buffer). A MIPS R10000 style register renaming scheme
is adopted in our implementation. The data cache is virtually
tagged with a 48-bit address and uses the write-back policy by
default. Table I gives the detailed configuration of the simulated
microprocessor. Cacti 6.5 [30] is used for area estimation and
energy profiling (at 32-nm technology) during the simulation.

For experimental evaluation, we use the SPEC CPU2000
benchmark suite compiled for the Alpha instruction set archi-
tecture using the “-arch ev6-non_shared” option with “peak”
tuning. We use the reference input sets for this study. Each
benchmark is first fast-forwarded to its early single simulation
point (gap and ammp use the standard single simulation point
instead of the very large early single simulation point) specified
by SimPoint [31]. We use the last 100 million instructions
during the fast-forwarding phase to warm-up the caches if the
number of skipped instructions is more than 100 million. Then,
we simulate the next 100 million instructions in detail.

B. Design Space Exploration

1) TRB Duplication Policies: DNC-Only Versus
DNC+DTBM: In our TRB design, we have two duplication
policies. One is DNC-Only policy, which performs the
duplication only when a new cacheline is written into the data
cache. The other is DNC+DTBM policy, which makes the
duplication not only when a new cacheline is written into
the data cache but also when a hit cacheline does not have

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

EODNC+DTBM EDNC-only

(—] =l =3
— N o
T i
[1 : ‘
[| |
T [|
[[|
[[|
[| |
[[[
[| |
[| |
[[|
[[[
T i i
T [[
T [|
T i
[[
[|
T T
T T
T [
[|
T T
[|
{ [
i

=
~
I
T
i
T
[
T
[
T
[
I
T
T
I
T
I
T
T
T
T
T
T
I
I
I

Access With Replica (AWR) Rate

R S PR TIPS P DL EERE D NS
;< & RIS ES F& FFISETL &S
o ¢ &S Q‘bé Qé@ &G @M&{ & &ef U & ;o?";g‘ S }*\&“’ » *

Fig. 6. AWR rate comparison of the TRB with different duplication policies.

[@32-entry E16-entry O8-entry|

Access With Replica (AWR) Rate

Fig. 7. AWR rate comparison of the TRB with different sizes.

a tag replica in the TRB. To evaluate these two duplication
policies, we use the LRU replacement policy in a 32-entry
TRB. Fig. 6 shows that the average AWR rate of the TRB with
the DNC+DTBM policy is 91.5% compared to 42.1% with the
DNC-Only policy. Therefore, to achieve a high AWR rate, the
DNC+DTBM policy is preferred. We use DNC+DTBM as the
default policy in the following study.

2) TRB Sizes: Fig. 7 shows the AWR rates for different TRB
sizes. An 8-entry TRB only has a 69.9% AWR rate and the AWR
rate of a 16-entry TRB is increased to 82.7%. In comparison, a
32-entry TRB achieves a very high AWR rate, 91.5% on the av-
erage. If we further increase the size of the TRB, the area over-
head of the TRB and the energy consumption in TRB accesses
will dramatically increase. Therefore, to balance the achieved
AWR rate and the incurred overheads, we choose the 32-entry
TRB in our TRB design.

3) TRB Replacement Policies: In the previous sections, in
order to study different design schemes and duplication policies
in the TRB, we assume the LRU as the default TRB replace-
ment policy. Although the LRU policy is good at exploiting the
property of locality, we need a more cost-effective policy due
to LRU’s implementation complexity. Therefore, we compare
three replacement policies, LRU, FIFO, and Random. The re-
sults in Fig. 8 show that the LRU policy achieves the highest
AWR rate, 91.5%, while the AWR rate of the FIFO policy is
90.0%. The Random policy has the lowest AWR rate, 88.1%.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

OLRU BFIFO ORandom OLRU+ EMFIFO+ |

|

IFHRARAR
i
I
L

Access With Replica (AWR) Rate

Y ———

LRI F DS S RFI S LR P2 S S R £ o &S O
L &S TR @SS E & & FFF S 3
FITCLE G SFF T STEY I EET T 0

Fig.8. AWR rate comparison of the TRB with different TRB replacement poli-
cies.

TABLE II
COMPARISON OF THE ECC, FD, TRB-CAT, AND TRB SCHEMES

| || ECC | FD | TRB-CAT [TRB |
Performance Loss 2% 0% 0% 0%
Area Overhead 21% 106% 39.1% 16.3%
Energy Overhead 118% | 44.2% 172% 19.9%
AWR Rate - 100% 92.5% 90.0%

The LRU information needs to be updated upon every tag ac-
cess. Therefore, in a cost-effective design, the FIFO policy is
preferred. We use the FIFO as the default TRB replacement
policy in our following study.

C. Comparison to Related Work

To provide a comprehensive analysis of our TRB (i.e., TRB-
PTR) design, we compare it with the ECC, TRB-CAT, and full
duplication (FD) schemes. The FD scheme maintains an iden-
tical copy of the tag array. All the tag values in TRB-CAT, TRB,
and FD are protected by the parity coding. A 32-entry TRB with
the FIFO and DNC+DTBM policy is used in our TRB designs.
Table II shows the comparison of these four schemes in terms
of performance, area, and energy overheads as well as the AWR
rate. We assume that the parity checking can be overlapped with
the tag comparison and will not cause additional delay to the
cache access. For ECC coding, we use a (33, 40) coding scheme
for each tag entry (33 bits) and optimistically assume one addi-
tional cycle delay in cache access. The energy number for parity
and ECC coding is scaled from [9]. The area overhead is esti-
mated with a modified Cacti 6.5 [30]. For the CAM estimation
of the pointer part in the TRB-CAT and TRB designs, we uti-
lize the implementation of the tag matching in a fully-associa-
tive cache from Cacti.

Table II shows that because of the performance degradation
(2%) and the high energy overhead (118%), ECC is not a good
choice for protecting the on-chip L1 cache in high-performance
processors. The 106% area overhead in the full duplication (FD)
scheme also makes it an inefficient design. Although compared
to the TRB scheme, the entry sharing property in the TRB-CAT
scheme results in a higher AWR rate (92.5%), the high energy
(172%) and area (39.1%) overheads are still not acceptable. In

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

WANG et al.: REPLICATING TAG ENTRIES FOR RELIABILITY ENHANCEMENT IN CACHE TAG ARRAYS 9
O TRB ES-TRB ORH @FWPL ORHFW CHFW B HPL Elnvalid B Unknown
1 _ x 1
3
©
pe 0.8
g el ein g owlnlnlnlnn B B =0.8'
& £
06 I I OO Sos
— -
e 2
& a
MY Y YN N WG WG Y NG NG Y NG NG N NN EG N R EE R RN . @
g 0.4 go_“
= <
3 o
& o2 I O 02
[¥]
o
<

0
& ¢ & S8 ST EFASE S,

Fig. 9. AWR rate comparison between the original TRB and S-TRB schemes.

conclusion, our TRB design achieves the lowest area and en-
ergy overheads among these four schemes with an AWR rate of
90.0%. Note that in the ECC scheme, although the achieved re-
liability cannot be measured by the AWR rate, all the single-bit
errors occurring in the tag entry can be recovered.

D. TRB Optimization Schemes

1) LRU+ and FIFO+: To improve the TRB replacement
policy, we propose the LRU+ and FIFO+ in Section V-A. Ex-
perimental results show that the LRU+ and FIFO+ can improve
the AWR by 0.6% and 1.0% on the average (shown in Fig. 8)
without noticeable overheads. Therefore, we will use the FIFO+
policy in the following study.

2) TBSC and TASC: The TRB side compression (TBSC)
scheme targets at reducing the area and energy overheads in the
TRB. Experimental results show that TBSC reduces the area and
energy overheads to 13.1% and 16.9%, compared to 16.3% and
19.9% in the original TRB scheme. Tag array side compression
(TASC) scheme targets at reducing the energy overhead in the
tag array. From our experimental results, the energy consump-
tion in the tag array access is reduced by 17% due to the gating
scheme. If we consider the overall energy consumption in the
TASC scheme, it will remain almost the same compared to a
conventional cache, which offsets the energy overhead incurred
by the TRB. For the following experiments, our TRB design by
default employs the TASC scheme.

3) S-TRB: In order to study the effectiveness of our S-TRB,
we first conduct a profiling on the cacheline distribution in a
write-back data cache. Our results show that on the average only
33% of the cachelines in the data cache are dirty during program
execution. The clean cachelines account for 66% and the rest are
invalid (not in use). By duplicating and maintaining the tags of
only dirty cachelines in the TRB, the S-TRB should deliver a
much higher AWR rate due to the virtually tripled TRB size.
Fig. 9 shows that the AWR rate of our selective scheme is in-
creased to 97.4% compared to the 91.0% in the original scheme.
Notice that the results are based on the 32-entry TRB with the
DNC+DTBM and FIFO+ policy.

4) Tag Array AVF Analysis: Fig. 10 shows the phase distribu-
tion of the tag array in a write-back data cache. About 0.76% of
the tag lifetime is in the RH and RHFW phases. The FWPL phase

Fig. 10. Lifetime distribution for the tag array in the write-back data cache.

contributes about 31.7%. Therefore, the total AVF of the tag
array is about 32.5%. Notice that we use the bit-level analysis for
tag AVF characterization without any tag protection schemes.

5) TRB With Early Write-Back (S-TRB-EWB): To evaluate
the reliability of our TRB design, we have introduced a new
metric, DOR-AVF. Fig. 11 shows that the TRB and S-TRB
schemes have reduced the tag DOR-AVF of dirty cachelines
from 31.7% to 22.6% and 16.7%, respectively. This moderate
improvement of the DOR-AVF is mainly due to the fact that
TRB is not directly optimizing the long FWPL phase. As shown
in Fig. 12, the RWR rates stay low, 18.3% for the TRB and
51.4% for the S-TRB. However, if we use a write-through cache,
the performance will degrade 3.7% and the energy consumption
of the L2 cache will be more than doubled compared to that
in a write-back cache, as shown in Figs. 13 and 14. By early
writing back dirty cachelines triggered by the TRB replacement,
S-TRB-EWB achieves a 100% AWR rate and a 100% RWR rate,
consequently delivering a zero DOR-AVF for the tags of dirty
cachelines. As shown in Fig. 13, S-TRB-EWB with a 32-entry
TRB incurs a negligible performance loss (<0.01%). Notice
that reducing the TRB size will cause more early write-back op-
erations to the L2 cache. To further study the energy consump-
tion in our S-TRB-EWB design, we conduct the simulation with
different TRB sizes. Fig. 14 shows that the S-TRB-EWB with
a 32-entry TRB only incurs a 9.7% energy increase in the L2
cache. If we further decrease the TRB size to 16-entry or 8-entry,
the energy consumption will increase by 18.8% or 27.9% com-
pared to that in the write-back cache.

E. Statistical Error Injection

In order to evaluate our refined AVF metric and the TRB
design, we also conduct statistical error injection during the
execution-driven simulation. The soft error injection flips one
bit or multiple bits in the selected tag entries in the tag array
or the TRB. For each benchmark, 100 errors are randomly in-
jected into tag entries or replicas during the execution. Notice
that errors injected in our simulation are accelerated and with
higher rate than real ones. As a general way to perform archi-
tectural-level error injection [8], accelerated error numbers are
assumed in order to expose the error behavior and evaluate the
reliability of the system. Although the accelerated error number

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

10
|I:lConventionaI B TRB O0S-TRB OS-TRB-EWB
1
0.9
0.8
0.7
% 0.6 ﬂ
5‘ 0.5
Q04
0.3 [.
0.2 ——
0.1
0 11
§% & sé(‘@(‘:&eé i}’& & 0(@ M e\l\“‘ ,}x\“‘&é‘e’#&" &"{é‘g} ,} ioéo:&ée@oio ,;‘b} S0
Fig. 11. DOR-AVF comparison for the parity-protected tags of the cache-

lines with write operations among conventional, original TRB, S-TRB, and
S-TRB-EWB data caches.

[@TRB ms-TRB OS-TRB-EWB

0.6 -H = HHIHIHHHHHH HHHHIHIHHHIH A

Replace With Replica (RWR) Rate

0.4 HHHHHHHHIHHHIHH HHHHBEH A A
0.2l HHHIHI -1 s HIlHHHEHEHE R H H A
0 +HLL Ni IR INLIRL LR IR il [0, RUINL IR " |l+|] 4
o 'S & 5 & > -
& gf‘ SRS S g‘io(@:@"@o‘ FLLES S é@ @“e S

0@,;,0 e‘\o@ \«"

Fig. 12. RWR rate of the original TRB, S-TRB, and S-TRB-EWB schemes.

[mWB mWT OS-TRB-EWB]

2.5

1.5+

Instructions Per Cycle (IPC)

Fig. 13. Comparison of performance among conventional write-back (WB),
write-through (WT), and S-TRB-EWB data caches.

is adopted, there are no double/multiple-bit errors occurring in
our simulation.

First, we conduct the error injection for a conventional write-
back data cache to verify our AVF analysis of the tag array.
Table III shows that on average 31 (out of 100) error are in-
jected into the FWPL phase that is the major contributor to the
tag AVF and 63.5 (out of 100) errors are injected into the HPL
phase that does not contribute to the tag AVF. The results are
consistent with our AVF analysis presented in Fig. 10. Then,
we conduct the error injection for our original TRB, S-TRB,

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

OWB EWT OS-TRB-EWB-32 O S-TRB-EWB-16 B S-TRB-EWB-8

0.0035

0.003

0.0025

0.002

0.0015

0.001 I

0.0005 I

L2 Energy Consumption (J)

0
o};& & § 6\c,‘("gc\ (P(S & {@ ' e**..\“”gﬂ‘&

\04"0 SR < R
0%”@&0(?00Q 2
FEF " FFEIESS

Fig. 14. Comparison of L2 cache energy consumption among conventional

write-back (WB), write-through (WT), and S-TRB-EWB data caches.

TABLE III
DISTRIBUTION OF INJECTED ERRORS AMONG DIFFERENT LIFETIME PHASES

[Bechmarks|[| RH [FWPL|RHFW [HFW [HPL [Invalid | Unknown |

gzip 1 42 0 1 56 0 0
vpr 0 27 0 2 71 0 0
gce 0 37 0 1 60 2 0
mcf 1 7 0 0 92 0 0
crafty 1 28 0 1 68 0 2
parser 0 37 0 1 61 0 1
eon 0 9 0 0 11 29 51
perlbmk 4 2 0 0 87 1 6
gap 0 90 0 0 9 0 1
vortex 0 18 0 0 79 1 2
bzip2 1 10 0 0 87 1 1
twolf 1 37 0 1 61 0 0
wupwise 2 S 0 0 93 0 0
swim 0 21 0 0 79 0 0
mgrid 0 27 0 0 73 0 0
applu 0 11 0 0 89 0 0
mesa 0 77 0 1 17 1 4
galgel 1 41 0 0 58 0 0
art 0 42 0 0 58 0 0
equake 2 10 0 0 88 0 0
facerec 0 86 0 1 13 0 0
ammp 1 19 0 1 79 0 0
lucas 2 12 0 0 86 0 0
fma3d 1 57 0 0 42 0 0
sixtrack 1 3 0 0 88 1 7
apsi 0 51 0 0 46 2 1
[avg JJ0.731] 31 | 0 J0.385]63.5] 1.46 [292 |

and S-TRB-EWB schemes. The results are shown in Table IV.
For the original TRB, the error recovery rate is 37.0% for the
clean-cacheline tags and 18.9% for the dirty-cacheline tags. The
error recovery rate is defined as the total number of errors that
can be recovered by the TRB over the total number of detected
errors. The error recovery rate in S-TRB increases to 42.9% and
the S-TRB-EWB has a 100% recovery rate, which also confirm
the effectiveness of our design and the achieved reliability. No-
tice that the recovery rate in S-TRB and S-TRB-EWB are only
for tags of dirty cachelines.

VIII. CONCLUSION

In this paper, we proposed a TRB design by exploiting the
memory address locality to protect the tag array of the on-chip
data cache against soft errors. Several optimized schemes such

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

WANG et al.: REPLICATING TAG ENTRIES FOR RELIABILITY ENHANCEMENT IN CACHE TAG ARRAYS

TABLE 1V
COMPARISON OF DETECTED AND RECOVERED ERRORS AMONG ORIGINAL TRB, S-TRB AND S-TRB-EWB SCHEMES

11

TRB S-TRB S-TRB-EWR
Benchmarks Clean Tag Dirty Tag Dirty Tag Dirty Tag
Detected | Recovered | Rate | Detected [Recovered| Rate || Detected [Recovered] Rate || Detected [Recovered| Rate
gzip 12 5 41.8% 48 6 12.5% 43 18 41.9% 51 51 100%
vpr 10 6 60.0% 32 1 3.13% 32 1 3.13% 6 6 100%
gce 13 4 30.8% 35 2 5.71% 34 4 11.8% 36 36 100%
mcef 2 1 50.0% 16 1 6.25% 7 3 42.9% 10 10 100%
crafty 47 19 40.4% 29 7 24.1% 29 16 55.2% 27 27 100%
parser 21 14 66.7% 34 7 20.6% 34 18 52.9% 33 33 100%
eon 36 15 41.8% 39 5 12.8% 38 5 13.2% 36 36 100%
perlbmk 6 2 33.3% 10 0 0.00% 3 3 100% 5 5 100%
gap 1 0 0.00% 97 6 6.19% 93 22 23.7% 96 96 100%
vortex 16 5 31.3% 17 0 0.00% 24 4 16.7% 12 12 100%
bzip2 11 5 45.5% 10 2 20.0% 9 5 55.6% 6 6 100%
twolf 15 6 40.0% 35 1 2.86% 41 3 7.32% 17 17 100%
wupwise 7 3 42.9% 8 1 12.5% 5 5 100% 2 2 100%
swim 3 1 33.3% 28 15 53.6% 23 16 69.6% 23 23 100%
mgrid 6 2 33.3% 26 17 65.4% 19 13 68.4% 25 25 100%
applu 1 0 0.00% 18 7 38.9% 7 4 57.1% 10 10 100%
mesa 7 3 42.9% 82 5 6.10% 76 8 10.5% 72 72 100%
galgel 17 7 41.2% 39 1 2.56% 32 2 6.25% 6 6 100%
art 2 1 50.0% 46 15 32.6% 17 16 94.1% 48 48 100%
equake 3 1 33.3% 13 10 76.9% 10 9 90.0% 11 11 100%
facerec 3 1 33.3% 83 29 34.9% 88 24 27.3% 90 90 100%
ammp 11 3 27.3% 19 1 5.26% 25 3 12.0% 8 8 100%
lucas 1 0 0.00% 10 3 30.0% 8 7 87.5% 9 9 100%
fma3d 6 3 50.0% 57 9 15.8% 36 15 41.7% 70 70 100%
sixtrack 4 2 50.0% 8 0 0.00% 8 1 12.5% 7 7 100%
apsi 9 4 44.4% 53 1 1.89% 49 7 14.3% 39 39 100%
[ave || 104 | 435 [37%] 343 | 585 [189%]] 304 | 892 [42.9%]] 29.0 | 29.0 [100%)]
as TBSC, TASC, and S-TRB are proposed to further improve the [2] J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, B. Chin,
reliability and reduce the energy and area overheads in our TRB M. Nicewicz, C. A. Russell, W. Y. Wang, L. B. Freeman, P. Hosier,
. . . L. E. LaFave, J. L. Walsh, J. M. Orro, G. J. Unger, J. M. Ross, T. J.
designs. Our simulation results show that the S-TRB scheme 0’Gorman, B. Messina, T. D. Sullivan, A. J. Sykes, H. Yourke, T. A.
with the DNC+DTBM duplication and FIFO+ replacement poli- Enger, V. Tolat, T. S. Scott, A. H. Taber, R. J. Sussman, W. A. Klein,
cies achieves a high AWR rate of 97.4% for the tags of dirty and C. Vlvg;’;’a?ag‘;l ‘:}?BMMe}cp;rimeDnts i;l soft f'izilj Oin CorrllputerSeng
cachelines, at a moderate hardware overhead. To further char- }r;flisgéﬁ > - e evetopr, OL 25 R0- L PP 278
acterize and optimize the reliability of the cache tag array, we [3] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi,
conducted the AVF analysis and proposed a refined evaluation “Moqehnﬁthe. e,f,f.ec;‘)fteihmlogy tlr)ends on the soft error rat;‘)fgom'
metric DOR-AVF that combines the vulnerability factor and l;gnga_t;ognga ogic.”in Proc. Int. Conf. Depend. Syst. Netw. Jun. 2002, pp.
AWR analysis. Based on our DOR-AVF analysis, we proposed [4] S. Kim and A. Somani, “Area efficient architectures for information
the S-TRB-EWB scheme to further improve the tag array relia- integrity checking in cache memories,” in Proc. Int. Symp. Comput.
. o . . Arch., May 1999, pp. 246-255.
blhty by optimizing the contradlctlng AVF and AWR simultane- [5]1 H. Asadi, V. Sridharan, M. B. Tahoori, and D. Kaeli, “Vulnerability
ously. Our experimental evaluation shows that the S-TRB-EWB analysis of L2 cache elements to single event upsets,” in Proc. Des.,
scheme achieves a 100% AWR rate and a zero DOR-AVF for the Autom., Test Eur., Mar. 2006, pp. 1-6. o
. . .. [6] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. C. Hoe, “Multi-bit
tags of dirty cachelines at a negligible performance loss and a error tolerant caches using two-dimensional error coding,” in Proc.
minor energy overhead. Furthermore, our statistical-error-injec- 40th IEEE/ACM Int. Symp. Microarch., Dec. 2007, pp. 197-209.
tion experiment results reassure us the AVF number from our [7] V. Degalahal, L. Li, V. Narayanan, M. Kandemir, and M. J. Irwin,
cp L - . . “Soft errors issues in low-power caches,” IEEE Trans. Very Large Scale
lifetime based tag vulnerability analysis and the achieved tag Integr. (VLSI) Syst., vol. 13, no. 10, pp. 11571166, Oct. 2005.
reliability by the TRB schemes. These results also confirm that [8] L. Li, V. Degalahal, N. Vijaykrishnan, M. Kandemir, and M. J. Trwin,
our TRB schemes can be an effective solution to protect the tag “'Soft error and energy consumption interactions: A data cache perspec-
. . . . tive,” in Proc. Int. Symp. Low Power Electron. Des., 2004, pp. 132-137.
arrays of on-chip caches for high-performance reliable micro- [9] R. Phelan, “Addressing soft errors in ARM core-based SOC,” ARM
processors. Ltd., San Jose, CA, ARM White Paper, Dec. 2003.
[10] N.N. Sadler and D. J. Sorin, “Choosing an error protection scheme for

REFERENCES

[1] C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Reinhardt, “Techniques
to reduce the soft errors rate in a high-performance microprocessor,” in
Proc. 31st Annu. Int. Symp. Comput. Arch., 2004, pp. 264-275.

(11]

(12]

amicroprocessor L1 data cache,” in Proc. Int. Conf. Comput. Des., Oct.
2006, pp. 499-505.

V. Sridharan, H. Asadi, M. B. Tahoori, and D. Kaeli, “Reducing
data cache susceptibility to soft errors,” IEEE Trans. Depend. Secure
Comput., vol. 3, no. 4, pp. 353-364, Oct. 2006.

S. Wang, J. Hu, and S. G. Ziavras, “Self-adaptive data caches for
soft-error reliability,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 27, no. 8, pp. 1503-1507, Aug. 2008.

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

[13] W. Zhang, “Computing cache vulnerability to transient errors and its
implication,” in Proc. 20th IEEE Int. Symp. Defect Fault Toler. VLSI
Syst., Oct. 2005, pp. 427-435.

[14] G. Asadi, V. Sridharan, M. B. Tahoori, and D. Kaeli, “Balancing reli-
ability and performance in the memory hierarchy,” in Proc. IEEE Int.
Symp. Perform. Anal. Syst. Softw., Mar. 2005, pp. 269-279.

[15] S. Wang, J. Hu, and S. G. Ziavras, “On the characterization of data
cache vulnerability in high-performance embedded microprocessors,”
in Proc. 6th Int. Conf. Embed. Comput. Syst.: Arch., Model., Simulation
(SAMOS VI), Jul. 2006, pp. 14-20.

[16] J. Yan and W. Zhang, “Evaluating instruction cache vulnerability to
transient errors,” ACM SIGARCH Comput. Arch. News, vol. 35, no. 4,
pp. 21-28, Sep. 2007.

[17] S. Wang, J. Hu, and S. G. Ziavras, “On the characterization and opti-

mization of on-chip cache reliability against soft errors,” IEEE Trans.

Comput., vol. 58, no. 9, pp. 1171-1184, Sep. 2009.

W. Zhang, S. Gurumurthi, M. Kandemir, and A. Sivasubramaniam,

“ICR: In-cache replication for enhancing data cache reliability,” in

Proc. Int. Conf. Depend. Syst. Netw., 2003, pp. 291-300.

A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. S. Mukherjee, and

R. Rangan, “Computing architectural vulnerability factors for address-

based structures,” in Proc. IEEE Int. Symp. Comput. Arch., Jun. 2005,

pp. 532-543.

[20] N. Quach, “High availability and reliability in the itanium processor,”
IEEE Micro, vol. 20, no. 5, pp. 61-69, 2000.

[21] C. McNairy and D. Soltis, “Itanium 2 processor microarchitecture,”
IEEE Micro, vol. 23, no. 2, pp. 44-55, 2003.

[22] K. Reick, P. N. Sanda, S. Swaney, J. W. Kellington, M. J. Mack, M.
S. Floyd, and D. Henderson, “Fault-tolerant design of the IBM power6
microprocessor,” IEEE Micro, vol. 278, no. 2, pp. 30-38, Mar.—Apr.
2008.

[23] AMD, Sunnyvale, CA, “Bios and Kernel Developer’s Guide for Amd
Athlon 64 and Amd Opteron Processors,” 2006.

[24] J.-C. Lo, “Fault-tolerant content addressable memory,” in Proc. Int.
Conf. Comput. Des., 1993, pp. 193-196.

[25] F. Salice, M. Sami, and R. Stefanelli, “Fault-tolerant cam architectures:
A design framework,” in Proc. 17th IEEE Int. Symp. Defect Fault-Toler.
VLSI Syst., 2002, pp. 233-244.

[26] H. Wang, T. Sun, and Q. Yang, “Cat—Caching address tags: A tech-
nique for reducing area cost of on-chip caches,” in Proc. 22nd Annu.
Int. Symp. Comput. Arch., 1995, pp. 381-390.

[27] W.Zhang, “Enhancing data cache reliability by the addition of a small
fully-associative replication cache,” in Proc. Int. Conf. Supercomput.,
2004, pp. 12-19.

[28] P.Petrov and A. Orailoglu, “Tag compression for low power in dynami-
cally customizable embedded processors,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 23, no. 7, pp. 1031-1047, Jul. 2004.

[29] D. Burger and T. M. Austin, “The Simplescalar Tool Set, Version 2.0,”
Comput. Sci. Dept., Univ. Wisconsin, Madison, Tech. Rep. 1342, 1997.

[30] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0:
A tool to model large caches,” HP Laboratories, 2009.

[31] T.Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in Proc. 10th Int. Conf.
Arch. Support for Program. Lang. Operat. Syst., Oct. 2002, pp. 45-57.

(18]

[19]

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Shuai Wang (S’07-M’10) received the B.S. degree
in computer science from Nanjing University, Nan-
jing, China, in 2003, and the Ph.D. degree in com-
puter engineering from New Jersey Institute of Tech-
nology, Newark, in 2010.

He is currently an Assistant Professor with the
Department of Computer Science and Technology,
Nanjing University. His research interests include
computer architecture, reliable circuits and systems,
power/thermal-aware systems design, reconfigurable
computing architectures, embedded systems, and

on-chip networks.
Dr. Wang is a member of the IEEE Computer Society, ACM, and ACM
SIGARCH.

Jie Hu (S°02-M’04-SM’11) received the B.E. de-

gree in computer science and engineering from Bei-

jing University of Aeronautics and Astronautics, Bei-

jing, China, in 1997, the M.E. degree in signal and

information processing from Peking University, Bei-

jing, China, in 2000, and the Ph.D. degree in com-

puter science and engineering from the Pennsylvania

State University, University Park, in 2004.

He has been an Assistant Professor with the Elec-

§ trical and Computer Engineering Department, New

Jersey Institute of Technology, since 2004. His re-

search interests include the areas of computer architecture, power-aware sys-

tems design, power-efficient memory hierarchy, high-performance micropro-

cessors, complexity-effective processor microarchitecture, power-efficient reli-

able systems, compiler optimizations for performance and power consumption,
and reconfigurable computing architecture. He is a member of the ACM.

Sotirios G. Ziavras (S’83-M’90-SM’96) received
the Diploma in electrical engineering from the
National Technical University of Athens, Greece,
in 1984, the M.Sc. in electrical and computer engi-
neering from Ohio University, Athens, in 1985, and
the D.Sc. degree in computer science from George
Washington University, Washington, DC, in 1990.

He was with the Center for Automation Research,
University of Maryland, College Park, from 1988 to
1989. He was a visiting Professor with George Mason
University in 1990. He is currently a Professor the
Department of Electrical and Computer Engineering, New Jersey Institute of
Technology, Newark. He has published over 150 research papers. He is listed,
among others, in the Marquis Who’s Who in Science and Engineering, Who’s
‘Who in America, Who’s Who in the World, and Who’s Who in the East. His
main research interests include advanced computer architecture, reconfigurable
computing, embedded computing systems, and parallel and distributed com-
puting.

