List of peer-reviewed studies that used simulation data produced by the CalC software.        

  1. Ernst A, Falkenhagen U, Winkelmann S (2023)
    Model reduction for Ca2+-induced vesicle fusion dynamics.
    Proc App Math Mech: e202300184.   LinkOut  
  2. Jusyte M, Blaum N, Böhme MA, Pushpalatha KV, Kobbersmed JRL, Walter AM (2023)
    Unc13A dynamically stabilizes vesicle priming at synaptic release sites for short-term facilitation and homeostatic potentiation. Cell Reports 42: 112541   LinkOut  
  3. Tran A, Silva M, Marty A (2023)
    Prioritized docking of synaptic vesicles provided by a rapid recycling pathway.
    iScience 26: 106366   LinkOut  
  4. Ernst A, Unger N, Schütte C, Walter A, Winkelmann S (2023)
    Rate-limiting recovery processes in neurotransmission under sustained stimulation.
    arXiv:2302.01635 [math.DS]   LinkOut  
  5. Matveev VV (2022)
    Close agreement between deterministic vs. stochastic modeling of first-passage time to vesicle fusion.
    Biophys J 121 doi:10.1016/j.bpj.2022.10.033   DOI     LinkOut     bioRxiv     PDF  
  6. Tran V, Miki T, Marty A (2022)
    Three small vesicular pools in sequence governsynaptic response dynamics during actionpotential trains. PNAS USA, 199(5): e2114469119.   LinkOut  
  7. Shah KR, Guan X, Yan J (2022)
    Structural and Functional Coupling of Calcium-Activated BK Channels and Calcium-Permeable Channels Within Nanodomain Signaling Complexes. Front Physiol 12: 796540.   LinkOut  .
  8. Iaparov B, Baglaeva I, Zahradník I, Zahradníková A (2022)
    Magnesium Ions Moderate Calcium-Induced Calcium Release in Cardiac Calcium Release Sites by Binding to Ryanodine Receptor Activation and Inhibition Sites. Frontiers Physiol 12: 805956.   LinkOut  
  9. Iaparov B, Zahradník I, Zahradníková A (2021)
    In silico simulations reveal that RyR distribution affects the dynamics of calcium release in cardiac myocytes.
    J Gen Physiol 153(4): e202012685.   LinkOut  
  10. Tran V, Stricker C (2021)
    Spontaneous and action potential-evoked Ca2+ release from endoplasmic reticulum in neocortical synaptic boutons.
    Cell Calcium 97: 102433.   LinkOut  
  11. Yang CH, Lee KH, Ho WK, Lee SH (2021)
    Inter-spike mitochondrial Ca2+ release enhances high frequency synaptic transmission.
    J Physiology 599:1567-1594.   LinkOut  
  12. Chen Y, Matveev VV (2021)
    Stationary Ca2+ nanodomains in the presence of buffers with two binding sites
    Biophys J 120(10): 1942-1956   LinkOut     PDF     SUPP     CODE  
    bioRxiv (early version with more approximants!) doi:10.1101/2020.09.14.296582   LinkOut  
  13. Kobbersmed JRL, Grasskamp AT, Jusyte M, Böhme MA, Ditlevsen1 S, Sørensen JB, Walter AM (2020)
    Rapid regulation of vesicle priming explains synaptic facilitation despite heterogeneous vesicle:Ca2+ channel distances. eLife 9: e51032.   LinkOut  
  14. Chen Y, Muratov C, Matveev VV (2020)
    Efficient approximations for stationary single-channel Ca2+ nanodomains across length scales
    Biophys J 119(6): 1239-1254   LinkOut     PDF  
    bioRxiv (early version) doi:10.1101/2020.01.16.909036   LinkOut  
  15. Ritzau-Jost A, Jablonski L, Viotti J, Lipstein N, Eilers J, Hallermann S (2018)
    Apparent calcium dependence of vesicle recruitment. J Physiol 596.19: 4693-4707.   DOI     LinkOut     Scripts  
  16. Tran V, Stricker C (2018)
    Diffusion of Ca2+ from small boutons en passant into the axon shapes AP-evoked Ca2+ transients.
    Biophysical Journal 115: 1344-1356   DOI     LinkOut  
  17. Tran V, Parka MCH, Stricker C (2018)
    An improved measurement of the Ca2+-binding affinity of fluorescent Ca2+ indicators.
    Cell Calcium 71: 86-94.   LinkOut  
  18. Böhme MA, Grasskamp AT, Walter AM (2018) Regulation of synaptic release-site Ca2+ channel coupling as a mechanism to control release probability and short-term plasticity FEBS Letters 592(21): 3516-3531   LinkOut     DOI  
  19. Walter AM, Böhme MA, Sigrist SJ (2018)
    Vesicle release site organization at synaptic active zones. Neurosci Res 127: 3-13   LinkOut     DOI  
  20. Matveev VV (2018)
    Extension of Rapid Buffering Approximation to Ca2+ Buffers with Two Binding Sites
    Biophys J, 114(5): 1204-1215   LinkOut     PDF  
  21. Neef J, Urban NT, Ohn T-L, Frank T, Jean P, Hell SW, Willig KI, Moser T (2018)
    Quantitative optical nanophysiology of Ca2+ signaling at inner hair cell active zones.
    Nature Communications 9: 290   LinkOut     Scripts  
  22. Gandasi NR, Yin P, Riz M, Chibalina MV, Cortese G, Lund PE, Matveev V, Rorsman P, Sherman A, Pedersen MG, Barg (2017)
    Ca2+ channel clustering with insulin-containing granules is disturbed in type 2 diabetes.
    J Clin Investigation 127(6): 2353-2364   LinkOut  
  23. Tagliavini A, Tabak J, Bertram R, Pedersen MG (2016)
    Is bursting more effective than spiking in evoking pituitary hormone secretion? A spatiotemporal simulation study of calcium and granule dynamics.
    Am J Physiol Endocrinol Metab 310(7):E515-25   LinkOut  
  24. Böhme MA, Beis C, Reddy-Alla S, Reynolds E, Mampell MM, Grasskamp AT, Lützkendorf J, Bergeron DD, Driller JH,
    Babikir H, Göttfert F, Robinson IM, O'Kane CJ, Hell SW, Wahl MC, Stelzl U, Loll B, Walter AM, Sigrist SJ (2016)
    Active zone scaffolds differentially accumulate Unc13 isoforms to tune Ca2+ channel-vesicle coupling.
    Nature Neurosci 19: 1311-1320.   LinkOut  
  25. Matveev VV (2016)
    Padé Approximation of a Stationary Single-Channel Ca2+ Nanodomain.
    Biophys J 111(9): 2062-2074.   LinkOut     PDF  
  26. Stanley EF (2015) Single calcium channel domain gating of synaptic vesicle fusion at fast synapses; analysis by graphic modeling. Channels 9(5): 324-333   LinkOut  
  27. Delvendahl I, Jablonski L, Baade C, Matveev V, Neher E, Hallermann S (2015)
    Reduced endogenous Ca2+ buffering speeds active zone Ca2+ signaling.
    PNAS USA doi: 10.1073/pnas.1508419112   LinkOut  
  28. Matthews EQ, Dietrich D (2015)
    Buffer mobility and the regulation of neuronal calcium domains.
    Frontiers Cellular Neurosci 9: 48.   LinkOut  
  29. Prokopiou AN, Drakakis EM (2015)
    Quantitative Analysis Linking Inner Hair Cell Voltage Changes and Postsynaptic Conductance Change: A Modelling Study. BioMed Research International 2015: 626971.   LinkOut  
  30. Cox DH (2014)
    Modeling a Ca2+ Channel/BKCa Channel Complex at the Single-Complex Level.
    Biophys J 107: 2797-2814.   LinkOut  
  31. Mehta B, Ke JB, Zhang L, Baden AD, Markowitz AL, Nayak S, Briggman KL, Zenisek D, Singer JH (2014)
    Global Ca2+ Signaling Drives Ribbon-Independent Synaptic Transmission at Rod Bipolar Cell Synapses.
    J Neurosci 34: 6233-6244.   LinkOut  
  32. Earley S (2013)
    TRPM4 cannels in smooth muscle function.
    Pflügers Archiv 465: 1223-1231.   LinkOut  
  33. Janicek R, Zahradníková A Jr; Poláková E, Pavelková J, Zahradník I, Zahradníková A (2012)
    Calcium spike variability in cardiac myocytes results from activation of small cohorts of RyR2 channels.
    Journal of Physiology 590.20: 5091-5106.   LinkOut  
  34. Gonzales AL, Earley S (2012)
    Endogenous cytosolic Ca2+ buffering is necessary for TRPM4 activity in cerebral artery smooth muscle cells.
    Cell Calcium 51: 82-93.   LinkOut  
  35. Matveev VV, Bertram R, Sherman A (2011)
    Calcium Cooperativity of Exocytosis as a Measure of Calcium Channel Domain Overlap.
    Brain Research 1398: 126-138.   PDF     LinkOut     Scripts  
  36. Weber AM, Wong FK, Tufford AR, Schlichter LC, Matveev V, Stanley EF (2010)
    N-type Ca2+ channels carry the largest current: implications for nanodomains and transmitter release.
    Nature Neuroscience 13: 1348-1350.   LinkOut     Scripts  
  37. Pan B, Zucker RS (2009)
    A general model of synaptic transmission and short-term plasticity.
    Neuron 62(4): 539-554.   LinkOut  
  38. Matveev VV, Bertram R, Sherman A (2009)
    Ca2+ current vs. Ca2+ channel cooperativity of exocytosis.
    Journal of Neuroscience 29(39):12196-12209.   PDF     LinkOut     Scripts  
  39. Frank T, Khimich D, Neef A, Moser T (2009)
    Mechanisms contributing to synaptic Ca2+ signals and their heterogeneity in hair cells
    PNAS USA 106(11): 4483-4488.   LinkOut  
  40. Fakler B, Adelman JP (2008)
    Control of KCa Channels by Calcium Nano/Microdomains. Neuron 59: 873-881.   LinkOut  
  41. Allana TN, Lin JW (2008)
    Effects of increasing Ca2+ channel-vesicle separation on facilitation at the crayfish inhibitory neuromuscular junction Neuroscience 154: 1242-1254.   LinkOut  
  42. Gilmanov IR, Samigullin DV, Vyskocil F, Nikolsky EE, Bukharaeva EA (2008)
    Modeling of quantal neurotransmitter release kinetics in the presence of fixed and mobile calcium buffers
    Journal of Computational Neuroscience 25: 296-307.   LinkOut  
  43. Zahradníková A Jr; Poláková E, Zahradník I, Zahradníková A (2007)
    Kinetics of calcium spikes in rat cardiac myoytes J Physiology 578: 677-691.   LinkOut  
  44. Cornelisse LN, van Elburg RAJ, Meredith RM, Yuste R, Mansvelder HD (2007)
    High Speed Two-Photon Imaging of Calcium Dynamics in Dendritic Spines: Consequences for Spine Calcium Kinetics and Buffer Capacity. PLoS ONE 2(10): e1073.   LinkOut     Scripts  
  45. Müller A, Kukley M, Uebachs M, Beck H, Dietrich D (2007)
    Nanodomains of Single Ca2+ Channels Contribute to Action Potential Repolarization in Cortical Neurons.
    Journal of Neuroscience, 27(3):483-495.   LinkOut  
  46. Babich O, Matveev VV, Harris AL, Shirokov R (2007)
    Ca2+-dependent inactivation of CaV1.2 channels prevents Gd2+ block: does Ca2+ block the pore of inactivated channels?
    Journal of General Physiology, 129: 477-483.   LinkOut     Scripts  
  47. Berkefeld H, Sailer, Bildl, Rohde, Thumfart, Eble, Klugbauer, Reisinger, Bischofberger, Oliver, Knaus, Schulte, Fakler B (2006)
    BKCa-Cav Channel Complexes Mediate Rapid and Localized Ca2+-Activated K+ Signaling.
    Science 314: 615-620.   LinkOut  
  48. Matveev VV, Bertram R, Sherman A (2006)
    Residual Bound Ca2+ Can Account for the Effects of Ca2+ Buffers on Synaptic Facilitation
    Journal of Neurophysiology, 96: 3389-3397.   LinkOut     PDF     Scripts  
  49. Millar AG, Zucker RS, Ellis-Davies GCR, Milton P, Charlton P, Atwood HL (2005)
    Calcium Sensitivity of Neurotransmitter Release Differs at Phasic and Tonic Synapses.
    Journal of Neuroscience, 25(12):3113-3125.   LinkOut  
  50. Müller A, Kukley M, Stausberg P, Beck H, Muller W, Dietrich D (2005)
    Endogenous Ca2+ buffer concentration and Ca2+ microdomains in hippocampal neurons.
    Journal of Neuroscience, 25(3):558-565.   LinkOut  
  51. Lin JW, Fu Q, Allana T (2005)
    Probing the endogenous Ca2+ buffers at the presynaptic terminals of the crayfish neuromuscular junction.
    Journal of Neurophysiology, 94: 377-386.   LinkOut  
  52. Matveev VV, Zucker RS, Sherman A (2004)
    Facilitation through Buffer Saturation: Constraints on Endogenous Buffering Properties
    Biophysical Journal, 86:2691-2709.   LinkOut     PDF     Scripts  
  53. Bennett MR, Farnell L, Gibson WG (2004)
    The Facilitated Probability of Quantal Secretion within an Array of Calcium Channels of an Active Zone at the Amphibian Neuromuscular Junction. Biophysical Journal 86(5): 2674-2690.   LinkOut  
  54. Matveev VV, Sherman A, Zucker RS (2002)
    New and Corrected Simulations of Synaptic Facilitation
    Biophysical Journal 83:1368-1373.   LinkOut     PDF     Scripts  

Victor Matveev