Amitabha Bose

  Journal Publications

1.      Diekman, C and Bose, A , (2022) Beyond the limits of circadian entrainement: Non-24-hour sleep-wake disorder, shift work, and social jet lag, J. Theoretical Biology, 545 , 111148

2.      Zemlianova, K, Bose, A and Rinzel, J (2022) A biophysical counting mechanism for keeping time, Biological Cybernetics 116 , 205-216

3.      Marcano, M, Bose, A and Bayman, P (2021) A one-dimensional map to study multi-seasonal coffee infestation by the coffee berry borer, Math Bio Sci 333, 108530

4.      Liao, G, Diekman, C, and Bose, A, (2020) Entrainment dynamics of forced hierarchical circadian systems revealed by 2-dimensional maps, SIADS 19, 2135-2161.

5.      Byrne, A, Rinzel, J, and Bose, A (2020), Order-indeterminant event-based maps for learning a beat, Chaos, 30, 083138

6.      Martinez, D, Anwar, H, Bose, A, Bucher, D and Nadim, F (2019), Short-term synaptic dynamics control the activity phase of neurons in an oscillatory network, eLife:e46911

7.      Bose, A, Byrne, A and Rinzel, J (2019), A neuromechanistic model for rhythmic beat generation, PLoS Computational Biology, 15(5): e1006450

8.      Akcay, Z., Huang, X., Nadim, F. Bose, A. (2018) Phase-locking and bistability in neuronal networks with synaptic depression, Physica D, 264, 8-21.

9.      Diekman, C. and Bose, A. (2018) Reentrainment of the circadian pacemaker during jet lag: East-west asymmetry and the effects of north-south travel, Journal of Theoretical Biology, 437, 261-285.

10.  Manchanda, K., Bose, A. and Ramaswamy, R. (2017) Collective dynamics in heterogeneous networks of neuronal cellular automata, Physica A, 487, 111-124.

11.  Golowash, J., Bose, A., Guan, Y.,  Salloum, D., Roeser, A. and Nadim, F. (2017) A balance of outward and linear inward ionic currents is required for the generation of slow wave oscillations, J. Neurophysiol. 118 1092-1104.

12.  Diekman, C. and Bose, A. (2016) Entrainment maps: A new tool for understanding properties of circadian oscillator models, J. Biol. Rhyth., 31, 598-616.

13.  Mouser, C., Bose, A. and Nadim, F., (2016) The role of electrical coupling in generating and modulating oscillations in a neuronal network, Math. Biosci., 278, 11-21.

14.  Bose, A and Rubin, J., (2015) Synaptic strategies for optimizing burst length in reciprocally coupled neuronal networks, Int. J. Bifur. Chaos, 25, 1540004.

15.  Bose, A., Golowasch, J., Guan, Y. and Nadim, F., (2014) Role of linear and voltage-dependent ionic currents in the generation of slow wave oscillations, J. Comput. Neurosci. 37, 229-242.

16.  Akcay, Z., Bose, A. and Nadim, F. , (2014) Effects of synaptic plasticity on phase and period locking of a network of two oscillatory neurons, J. Math. Neuro. 4:8; doi:10.1186/2190-8567-4-8

17.  Kumar, R., Bose, A. and Mallick, B., (2012) A mathematical model towards understanding the mechanism of neuronal regulation of waking-NREMS-REMS states, PLoS ONE 7(8): e42059

18.  Nadim, F., Zhao, S., Zhao, L. and Bose, A. (2011) Inhibitory feedback promotes stability in an oscillatory network, J. Neural Eng. 8, 065001.

19.  Singh, T.U., Manchanda, K., Ramaswamy, R. and Bose, A. (2011) Excitable nodes on random graphs: Relating dynamics to network structure, SIADS, 10, 987-1012.

20.  Bose, A. and Booth, V. (2011) Co-existent activity patterns in inhibitory neuronal networks with short-term synaptic depression, J.Theor. Biol., 272, 42-54. 

21.  Zhang, Y, Bose, A, and Nadim, F (2009) The influence of the A-current on the dynamics of an oscillator-follower feed-forward inhibitory network , SIAM J. Appl. Dyn. Syst., 8 , 1564-1590.

22.  Chandrasekaran, C, Matveev, V and Bose, A (2009) Multistability of clustered states in a globally inhibitory network, Physica D 238 253-263.

23.  Zhang, Y, Bose, A, and Nadim, F (2008) Predicting the activity phase of a follower neuron with A-current in an inhibitory network, Biol. Cyber. 99 171-184.

24.  Mouser, C, Nadim, F, and Bose, A (2008) Maintaining phase of the crustacean tri-phasic pyloric rhythm, J. Math. Biol, 57, 161-181.

25.  Matveev, V, Bose, A and Nadim, F, (2007) Capturing the bursting dynamics of a two-cell inhibitory network using a one-dimensional map, J. Comput. Neurosci., 23,  169-187.

26.  Rubin, J. and Bose, A. (2006), The geometry of neuronal recruitment , Physica D, 221 , 37-57.

27.  Ambrosio-Mouser, C., Nadim, F. and Bose, A. (2006), The effects of varying the timing of inputs on a neural oscillator , SIAM J. Appl. Dyn. Syst., 5 , 108-139.

28.  Bose, A., Manor, Y. and Nadim, F., (2004)"The activity phase of postsynaptic neurons in a simplified rhythmic network.", J. Comput. Neurosci. 17 , 245-261.

29.  Rubin, J. and Bose, A., (2004) Localized activity patterns in excitatory neuronal networks, Network: Comput. Neural Syst. 15 , 133-158.

30.  Manor, Y., Booth, V., Bose, A. and Nadim, F., (2003)"The contribution of synaptic depression to phase maintenance in a model rhythmic network", J. of Neurophysiology 90 , 3513-3528.

31.  Kunec, S. and Bose, A. (2003), "High-frequency, depressing inhibition facilitates synchroniztion in globally inhibitory networks" , Network: Comput. Neural Syst. 14 , 647-672.

32.  Booth, V. and Bose, A. (2002), "Burst synchrony patterns in hippocampal pyramidal cell model networks" , Network: Comput Neural Syst. 13 , 157-177.

33.  Bose, A., Manor, Y. and Nadim, F. (2001) "Bistable oscillations arising from synaptic depression" , SIAM Journal of Applied Mathematics 62 , 706-727.

34.  Bose, A. and Recce, M. (2001), "Phase precession and phase locking of hippocampal pyramidal cells" Hippocampus, 11 , 204-215.

35.  Booth, V. and Bose, A. (2001) "Neural mechanisms for generating rate and temporal codes in model CA3 pyramidal cells" , Journal of Neurophysiology, 85 , 2432-2445.

36.  Kunec, S and Bose, A. (2001), "Role of synaptic delay in organizing the behavior of self-inhibiting neurons", Physical Review E 63 , 0219081-13.

37.  Bose, A., Booth, V. and Recce, M. (2000), "A temporal mechansism for generating the phase precession of hippocampal place cells" , J. Comput. Neuro., 9,

38.  Bose, A. and Kriegsmann, G. (2000),"Large amplitude solutions of spatially non-homgeneous non-local reaction diffusion equations", Methods and Applications of Analysis, 7 , 295-311.

39.  Bose, A., Kopell, N. and Terman, D. (2000), "Almost-synchronous solutions for mutually coupled excitatory neurons", Physica D 140 , 69-94.

40.  Bose, A. (2000), "A geometric approach to singularly perturbed non-local reaction diffusion equations",SIAM J. Math. Anal. 31, 431-454. Erratum

41.  Bose, A. and Kriegsmann, G. (1998), "Stability of localized structures in non-local reaction diffusion equations", Methods and Applications of Analysis,  5, 351-366.

42.  Terman, D, Kopell, N and Bose, A., (1998), "Dynamics of Two Mutually Coupled Slow Inhibitory Neurons," Physica D, 117,  241-275.

43.  Terman, D., Bose, A. and Kopell, N. (1996), "Functional Reorganization in Thalamocortical Networks: Transition Between Spindling and Delta Sleep Rhythms, " Proc. Nat. Acad. Sci. 93, No. 26. 15417-15422.

44.  Bose, A. and Jones, C.K.R.T. (1995), "Stability of the In-phase Travelling Wave Solution in a Pair of Coupled Nerve Fibers, " Indiana University Mathematics Journal, 44, 189-220.

45.  Bose, A. (1995), "Symmetric and Antisymmetric Pulses in Parallel Coupled Nerve Fibres, " SIAM J. Applied Math.,  55 No. 6, 1650-1674.

46.  Bambaugh, B.,  Bose, A.  Ditmire, T., Kennedy,  C., Puseljic, D., Ruchti, R., Ryan, J., Baumbaugh, A.  and  Knickerbocker , K. (1990), " Computer automated data acquisition and control for measurement of scintillation materials and scintillating fibres" IEEE Trans. On Nucluear Science , 37, 298-304.

47.  Ruchti, R.,  Baumbaugh,  B.,  Bose, A., Ditmire, T.,  Kennedy, C.,  Puseljic, D.,  Ryan, J., Baumbaugh, A.,   Knickerbocker, K.,  Ellis, J.,  Mead, R.  and Swanson, D.  (1989), "Development of new scintillating fiber detectors for high energy physics applications" IEEE Trans. On Nucluear Science , 36, 146-149.

       Computational Neuroscience Conference Papers

  1. Drover, J, Tohidi, V, Bose, A and Nadim, F. (2007), Combining synaptic and cellular resonance in a feed-forward neuronal network , Neurocomputing, 70, 2041-2045.
  2. Bose, A., Lewis, T. and Wilson, R. (2005) Two-oscillator model of ventilatory rhythmogenesis in the frog , Neurocomputing 65-66 , 751-777.
  3. Ambrosio, C., Bose, A. and Nadim, F. (2005), The Effect of Modulatory Neuronal Input on Gastric Mill Frequency , Neurocomputing 65-66 , 623-631.
  4. Nadim, F., Booth, V., Bose, A. and Manor, Y. (2003), "Short-term synaptic dynamics promote phase maintenance in multi-phasic rhythms", Neurocomputing, 52-54 , 79-87.
  5. Booth, V. and Bose, A. (2002) , "Transitions between different types of synchronous oscillations using synaptic depression", Neurocomputing, 44-46C , 61-67.
  6. Booth, V and Bose, A. (2001) "Regulating firing rate of networks of pyramidal cells," Neurocomputing, 38-40, 497-504.
  7. Nadim, F, Manor, Y and Bose, A. (2001) "Control of network output by synaptic depression," Neurocomputing, 38-40, 781-787.
  8. Bose, A and Kunec, S. (2001) "Synchrony and frequency regulation by synaptic delay in networks of self-inhibiting neurons,", Neurocomputing, 38-40, 505-513.
  9. Recce, M., Bose, A., and Booth, V. (2000) "Hippocampal place cells and the generation of a temporal code", Neurocomputing 32-33, , 225-234.

       Other Publications

  1. Bose, A., (2014) Bifurcation in the dynamics of single neurons and small networks, Ency. Computational Neuroscience, DOI 10.1007/978-1-4614-7320-6_453-1 Springer pp. 1-10
  2. Bose, A. and Nadim, F., (2014) Multistability arising from synaptic dynamics, Ency. Computational Neuroscience. DOI 10.1007/978-1-4614-7320-6_272-1 Springer pp. 1-11
  3. Nadim, F., Zhao, S. and Bose, A., (2012) A PRC description of how inhibitory feedback promotes oscillation stability, in Phase Response Curves in Neuroscience, Eds. Schultheiss, Nathan W.; Prinz, Astrid A.; Butera, Robert J., 399-418.
  4. Nadim, F and Bose, A. (2007) , Dynamics of Central Pattern Generating Networks: Locus of Control ,  SIAM News, 40.
  5. Bose, A. and Booth V. (2005) Bursting in 2-compartment neurons: A case study of the Pinsky-Rinzel model, in Bursting: The genesis of rhythm in the nervous system Eds. Stephen Coombes, Paul Bressloff, 123-144.

       Edited Books

  1. Frontiers of Applied and Computational Mathematics, Eds. Denis Blackmore, Amitabha Bose and Peter Petropoulos, World Scientific 2008