img

Denis Blackmore

1.      D. Blackmore, New models for chaotic dynamics, Regular & Chaotic Dynamics (Special Poincaré 150th Anniversary Issue) 10 (2005), 307-321.

2.      Y. Zhou, C. Wang and D. Blackmore The uniqueness of limit cycles for Liénard systems, J. Math. Anal. Appl. 304 (2005), 473-489. Link to Publication

3.      D. Blackmore, J. Champanerkar and C. Wang, A generalized Poincaré-Birkhoff theorem with applications to coaxial vortex ring motion, Disc. & Contin. Dyn. Sys. B 5 (2005), 15-33.Link to abstract

4.      N. Aboobaker, D. Blackmore and J. Meegoda, Mathemaical modeling of the movement of suspended particles subjected to acoustic and flow fields, Appl. Math. Modeling 29 (2005), 515-532. Link to Publication

5.      A. Rosato, D. Blackmore, L. Buckley, M. Johnson and C. Oshman, Experimental, simulation and nonlinear dynamics analysis of Galton’s board, Int. J. Nonlin. Sci. and Num. Simul. 5 (2004), 289-312.Link to Abstract

6.      A. Samoilenko, Y. Prykarpatsky, D. Blackmore and A. Prykarpatsky, On Liouville-Arnold integrable flows related to quantum algebras and their Poissonian representations, Proc. Ukr. Acad. Sciences 50 (2004), 1184-1191.

7.      D. Blackmore and C. Wang, Morse index for autonomous linear Hamiltonian systems, Int. J. Diff. Eqs. and Appl. 7 (2003), 295-309.

8.      N. Aboobaker, J. Meegoda and D. Blackmore, Fractionation and segregation of suspended particles using acoustic and flow fields, ASCE J. Environ. Eng. 129 (2003), 427-434.Link to Publication

9.      A. Rosato, D. Blackmore, N. Zhang and Y. Lan, A perspective on vibration-induced size segregation of granular materials, J. Chem. Eng. Science 57 (2002), 265-275.

10.  J. Chen and D. Blackmore, On the exponentially self-regulating population model, Chaos, Solitons and Fractals 14 (2002), 1433-1450.Link to Publication

11.  D. Blackmore, R. Samulyak, A. Rosato, “Chaos in Vibrating Granular Flows,” in Dynamic Systems and Applications,(eds. G. S. Laddle, N. G. Medhin, M. Sambandham),Vol 3,77-84, Dynamic Publishers, Inc. (2001).

12.  Segregation in Granular Flows, eds. A. D. Rosato and D. L. Blackmore, Kluwer Academic Publishers, Dordrecht, The Netherlands (2000).

13.  D. Blackmore, R. Samulyak and A. D. Rosato, “New Mathematical Models for Particle Flow Dynamics,” Journal of Nonlinear Mathematical Physics 6 [2], 198-221 (1999).

14.  D. Blackmore, R. Samulyak, and A. D. Rosato, “Granular Flow in Hoppers and Vibrating Beds: Mathematical Models, Numerical Solutions and Computer Simulations,” Proc. of the 1998 AIChE Annual Meeting, Miami, FL, Nov. 15-20, 1998.