img

David Horntrop

1.        Bailon, M., and Horntrop, D., On the Calculation of convolutions with Gaussian kernels, Applied. Math. Comp., (to appear).

2.        Horntrop, D., Mesoscopic simulation  of Ostwald ripening, J. Comp. Phys.,  (to appear).

3.        Horntrop, D., Mesoscopic simulation for self-organization in surface processes, in Computational Science-ICCS 2005, edited by V. Sunderam, et al, Springer Lecture Notes in Computer Science 3514, 851-859, 2005.

4.        Horntrop, D., Monte Carlo simulation of a random field model for transport, Monte Carlo Meth. App. 8, 31-39, 2002.

5.        Horntrop, D., and Katsoulakis, M., and Vlachos, D., Spectral methods for mesoscopic models of pattern formations, J. Comp. Phys. 173, 364-390, 2001.

6.        Horntrop, D. and Majda, A., An overview of Monte Carlo simulation techniques for the generation of random fields, in Monte Carlo Simulations in Oceanography, Proceedings of the Ninth ‘Aha Huliko’ a Hawaiian Winter Workshop. P Muller and D Henderson, editors, 67-79, 1997.

7.        Elliot, F., Horntrop, and D., Majda, A., A Fourier wavelet Monte Carlo Method for fractal random fields, J. Comp. Phys.132, 384-408, 1997.

8.        Elliot, F., Horntrop, and D., Majda, A., Monte Carlo methods for turbulent tracers with long range and fractal random velocity fields, Chaos 7, 39-48, 1997.

9.        Elliot, F., Majda, A., Horntrop, and D., McLaughlin R., Hierarchical  Monte Carlo methods for fractal random fields, J. Stat. Phys. 81, 717-736, 1995.

10.      Horntrop, D., Monte Carlo Simulation for Turbulent Transport, Ph.D Thesis, Program in Applied and Computational Mathematics, Princeton University, Advisor: Andrew J. Majda, 1995.

11.  Horntrop, D. and Majda, A., Subtle statistical behavior in simple models for random advection-diffusion, J. Math. Sci. Univ. Tokyo 23-70, 1994.