1. N. Rameshkumar, A.P. Shrestha, J.M. Boff, M. Hoon, V. Matveev, D. Zenisek, T. Vaithianathan (2025)
    Nanophysiology Approach Reveals Diversity in Calcium Microdomains across Zebrafish Retinal Bipolar Ribbon Synapses. eLife (Preprint)   DOI     PDF  
  2. V.V. Matveev (2022)
    Close agreement between deterministic vs. stochastic modeling of first-passage time to vesicle fusion.
    Biophys J 121 doi:10.1016/j.bpj.2022.10.033   DOI     LinkOut     bioRxiv     PDF  
  3. Y. Chen, V. Matveev (2021)
    Stationary Ca2+ nanodomains in the presence of buffers with two binding sites
    Biophys J 120(10): 1942-1956   LinkOut     PDF     SUPP     CODE  
    bioRxiv (early version with more approximants!) doi:10.1101/2020.09.14.296582   LinkOut  
  4. Y. Chen, C. Muratov, V. Matveev (2020)
    Efficient approximations for stationary single-channel Ca2+ nanodomains across length scales
    Biophys J 119(6): 1239-1254   LinkOut     PDF  
    bioRxiv (early version) doi:10.1101/2020.01.16.909036   LinkOut  
  5. V.V. Matveev (2020)
    Biophysical Models of Calcium-Dependent Exocytosis.
    In: Jaeger D., Jung R. (Ed.) Encyclopedia of Computational Neuroscience. Springer, New York, NY.
      LinkOut     PDF  
  6. V.V. Matveev (2018)
    Extension of Rapid Buffering Approximation to Ca2+ Buffers with Two Binding Sites
    Biophys J, 114(5): 1204-1215   LinkOut     PDF  
  7. Gandasi, Yin, Riz, Chibalina, Cortese, Lund, Matveev, Rorsman, Sherman, Pedersen, Barg (2017)
    Ca2+ channel clustering with insulin-containing granules is disturbed in type 2 diabetes.
    J. Clin. Invest. 127(6): 2353-2364   LinkOut  
  8. V.V. Matveev (2016)
    Padé Approximation of a Stationary Single-Channel Ca2+ Nanodomain.
    Biophys J 111(9): 2062-2074.   LinkOut     PDF     Code  
  9. I. Delvendahl, J. Jablonski, C. Baade, V. Matveev, E. Neher, S. Hallermann (2015)
    Reduced endogenous Ca2+ buffering speeds active zone Ca2+ signaling.
    PNAS USA 112(23): E30705-E3084   LinkOut  
  10. V.V. Matveev (2014)
    Biophysical Models of Facilitation.
    In: Jaeger D., Jung R. (Ed.) Encyclopedia of Computational Neuroscience.
    Springer, New York, NY.   LinkOut     PDF  
  11. D. Martinez, V. Matveev and F. Nadim (2014)
    Short-Term Synaptic Plasticity in Central Pattern Generators.
    In: Jaeger D., Jung R. (Ed.) Encyclopedia of Computational Neuroscience.
    Springer, New York, NY.   LinkOut  
  12. M. Oh, S. Zhao, V. Matveev and F. Nadim (2012)
    Neuromodulatory changes in short-term synaptic dynamics may be mediated by two distinct mechanisms of presynaptic calcium entry. Journal of Computational Neuroscience 33(3): 573-585.
      LinkOut     PDF     Code  
  13. V. Matveev, R. Bertram, A. Sherman (2011)
    Calcium Cooperativity of Exocytosis as a Measure of Calcium Channel Domain Overlap.
    Brain Research 1398: 126-138.   LinkOut     PDF     Code  
  14. M. Oh and V. Matveev (2011)
    Non-weak inhibition and phase resetting at negative values of phase in cells with fast-slow dynamics at hyperpolarized potentials. Journal of Computational Neuroscience 31(1): 31-42.   LinkOut     PDF     Code  
  15. A.M. Weber, F.K. Wong, A.R. Tufford, L.C. Schlichter, V.V. Matveev, and E.F. Stanley (2010)
    N-type Ca2+ channels carry the largest current: implications for nanodomains and transmitter release.
    Nature Neuroscience 13: 1348-1350.   LinkOut     Code  
  16. V. Matveev, R. Bertram, A. Sherman (2009)
    Ca2+ current vs. Ca2+ channel cooperativity of exocytosis.
    Journal of Neuroscience 29(39):12196-12209.   LinkOut     PDF     Code  
  17. M. Oh and V. Matveev (2009)
    Loss of phase-locking in non-weakly coupled inhibitory networks of type-I model neurons
    Journal of Computational Neuroscience, 26(2): 303-320.   LinkOut     PDF     Code  
  18. L. Chandrasekaran, V. Matveev, and A. Bose (2009)
    Multistability of clustered states in a globally inhibitory network
    Physica D: Nonlinear Phenomena, 238(3): 253-263.   LinkOut     PDF     Code  
  19. V. Matveev and M. Oh (2008)
    Negative Phase and Leader Switching in Non-weakly Coupled Two-Cell Inhibitory Networks
    Proceedings, Frontiers in Applied & Computational Mathematics, World Scientific
    ISBN 978-981-283-528-4   PDF  
  20. V. Matveev and R. Schrock (2008)
    On Properties of the Ising Model for Complex Energy/Temperature and Magnetic Field.
    Journal of Physics A: Mathematical and General, 44: 135002-135024.   PDF  
  21. O. Babich, V. Matveev, A. L. Harris and Roman Shirokov (2007)
    Ca2+-dependent inactivation of CaV1.2 channels prevents Gd2+ block: does Ca2+ block the pore of inactivated channels?
    Journal of General Physiology, 129: 477-483.   LinkOut     Code  
  22. V. Matveev, A. Bose, and F. Nadim (2007)
    Capturing the bursting dynamics of a two-cell inhibitory network using a one-dimensional map
    Journal of Computational Neuroscience, 23: 169.   LinkOut     PDF     Code  
  23. V. Matveev, R. Bertram, A. Sherman (2006)
    Residual Bound Ca2+ Can Account for the Effects of Ca2+ Buffers on Synaptic Facilitation
    Journal of Neurophysiology, 96: 3389-3397.   LinkOut     PDF     Code  
  24. V. Matveev, R.S. Zucker, A. Sherman (2004)
    Facilitation through Buffer Saturation: Constraints on Endogenous Buffering Properties
    Biophysical Journal, 86:2691-2709.   LinkOut     PDF     Code  
  25. V. Matveev, A. Sherman, R.S. Zucker (2002)
    New and Corrected Simulations of Synaptic Facilitation
    Biophysical Journal 83:1368-1373.   LinkOut     PDF     Code  
    Missing reference: Tang Schlumpberger Kim Lueker Zucker (2000) Biophys J 78:2735-2751   LinkOut  
  26. V. Matveev and X.-J. Wang (2000)
    Differential Short-Term Plasticity and Transmission of Complex Spike Trains: to Depress or to Facilitate?
    Cerebral Cortex 10:1143-1153.   LinkOut     PDF  
  27. V. Matveev and X.-J. Wang (2000)
    Implications of All-or-None Synaptic Transmission and Short-Term Depression Beyond Vesicle Depletion: A Computational Study. Journal of Neuroscience 20:1575-1588.   LinkOut     PDF  
  28. V. Matveev and R. Shrock (1996)
    Complex-Temperature Phase Diagram of the 1D Z6 Clock Model and its Connection with Higher-Dimensional Models
    Phys. Lett. A221:343.   PDF  
  29. V. Matveev and R. Shrock (1996)
    Complex-Temperature Singularities in Potts Models on the square lattice
    Phys. Rev. E54: 6174.   PDF  
  30. V. Matveev and R. Shrock (1996)
    Some new results on Yang-Lee zeros of the Ising model partition function
    Phys. Lett. A215: 271.   PDF  
  31. V. Matveev and R. Shrock (1996)
    Complex-temperature properties of the 2D Ising model for nonzero magnetic field
    Phys. Rev. E53: 254.   PDF  
  32. V. Matveev and R. Shrock (1996)
    Complex-temperature singularities in the 2D Ising model: triangular and honeycomb lattices
    J. Phys. A: Math. Gen. 29: 803-823.   PDF  
  33. V. Matveev and R. Shrock (1995)
    A connection between complex-temperature properties of the 1D and 2D spin s Ising model
    Phys. Lett. A204: 353-358.   PDF  
  34. V. Matveev and R. Shrock (1995)
    Zeros of the partition function for higher-spin 2D Ising models
    J. Phys. A: Math. Gen. 28: L533-L539.   PDF  
  35. V. Matveev and R. Shrock (1995)
    Complex-temperature properties of the Ising model on 2D heteropolygonal lattices
    J. Phys. A: Math. Gen. 28: 5235-5256.   PDF  
  36. V. Matveev and R. Shrock (1995)
    Complex-temperature properties of the 2D Ising model with ß H = ± i π / 2
    J. Phys. A: Math. Gen. 28: 4859-4882.   PDF  
  37. V. Matveev and R. Shrock (1995)
    Complex-temperature singularities of the susceptibility in the 2D Ising model. I. Square lattice
    J. Phys. A: Math. Gen. 28: 1557-1583.   PDF  
  38. V. Matveev (1993)
    Numerical study of periodic instanton configurations in two-dimensional abelian Higgs theory
    Phys. Lett. B304: 291-294.   PDF  

[ Back to top ]


Victor Matveev